李敏
职称:讲师
Email:limin@jxufe.edu.cn
2018 年硕博连读毕业于中山大学数学学院取得理学博士学位,师从殷朝阳教授学习非线性偏微分方程(Nonlinear PDE)。目前承担《数学分析》、《高等数学》、《随机过程》等课程教学;学术上参与课题与发表论文情况如下:
一、目前发表或已接收论文
(1) Li Jinlu; Li Min; Zhu Weipeng ; Non-uniform Dependence for the Novikov Equation in Besov Spaces, Journal of Mathematical Fluid Mechanics, 2020, 22(4): 0-50
(2) Li, Min; Yin, Zhaoyang ; Global solutions and blow-up phenomena for a generalized Degasperis-Procesi equation, Journal of Mathematical Analysis and Applications, 2019, 478(2): 604-624
(3) Li Min; Yin Zhaoyang ; Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation, Discrete and Continuous Dynamical Systems, 2017, 37(12): 6471-6485
(4) Li, Min; Yin, Zhaoyang ; Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation with cubic nonlinearity, Nonlinear Analysis Theory Methods and Applications, 2017, 151: 208-226
(5) Li, Min; Yin, Zhaoyang ; Global existence and local well-posedness of the single-cycle pulse equation, Journal of Mathematical Physics, 2017, 58(10): 0-101515
(6) Li Min; Liu Huan; On the continuity of the solution map of the Euler-Poincaré equations in Besov spaces, Journal of Mathematical Analysis and Applications,2023. Accepted.
(7) Li Jinlu; Deng Wei; Li Min; Non-uniform dependence for higher dimensional Camassa-Holm equations in Besov spaces, Nonlinear Anal. Real World Appl., 63(2022), 103420.
(8) Deng Wei; Li Min; Wu Xing; Zhu Weipeng; Ill-posedness for a generalized Camassa-Holm equation with higher-order nonlinearity in the critical Besov space, Monatsh. Math., (2023)1-15, doi.org/10.1007/s00605-023-01864-9.
(9) Wu Xing; Li Min; Ill-posedness for a two-component Novikov system in Besov space, Journal of Mathematical Analysis and Applications, 525(2023), 127171.
二、在研主持或参与的自然科学基金项目
(1) 国家自然科学基金委员会, 地区科学基金项目, 12161041, 与微分算子相伴的 BMO 型和 Besov 型空间及在一类抛物方程中的应用, 2022-01-01 至 2025-12-31, 32 万元, 在研, 参与;
(2) 江西省自然科学基金青年项目, S2021QNJJL0998,具有高次非线性项的浅水波方程若干问题研究, 2021-01-01 至 2023-12-31, 10 万元, 在研, 主持;
(3) 国家自然科学基金委员会, 面上项目, 71971102, 时滞微分广义 Nash 均衡模型的构建、分析及应用研究, 2020-01-01 至 2023-12-31, 48 万元, 在研, 参与;