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Abstract—During the past few years, there have been various
kinds of content-aware image retargeting operators proposed
for image resizing. However, the lack of effective objective
retargeting quality assessment metrics limits the further develop-
ment of image retargeting techniques. Different from traditional
image quality assessment (IQA) metrics, the quality degradation
during image retargeting is caused by artificial retargeting
modifications, and the difficulty for image retargeting quality
assessment (IRQA) lies in the alternation of the image resolution
and content, which makes it impossible to directly evaluate
the quality degradation like traditional IQA. In this paper,
we interpret the image retargeting in a unified framework of
resampling grid generation and forward resampling. We show
that the geometric change estimation is an efficient way to
clarify the relationship between the images. We formulate the
geometric change estimation as a backward registration problem
with Markov random field and provide an effective solution.
The geometric change aims to provide the evidence about how
the original image is resized into the target image. Under the
guidance of the geometric change, we develop a novel aspect
ratio similarity (ARS) metric to evaluate the visual quality of
retargeted images by exploiting the local block changes with
a visual importance pooling strategy. Experimental results on
the publicly available MIT RetargetMe and CUHK data sets
demonstrate that the proposed ARS can predict more accurate
visual quality of retargeted images compared with the state-of-
the-art IRQA metrics.

Index Terms—Image retargeting quality assessment, geometric
change, backward registration.

I. INTRODUCTION

ECENTLY, the increasing trend of widely used display
devices has imposed the demand for image adaptation
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to different resolutions and aspect ratios. In addition,
designers like to edit images into different sizes for different
purposes. In the past few years, a number of content-
aware image retargeting methods have been developed for
image resizing [1]. The image retargeting operators can be
broadly categorized into two types: discrete and continu-
ous approaches [2], based on whether they treat images
as discrete pixels or continuous signals. The typical dis-
crete approaches mainly include manual Cropping (CR),
Seam-Carving (SC) [3], and Shift-Map (SM) [4], while uni-
form Scaling in one dimension (SCL), non-homogeneous
Warping (WARP) [5], Streaming Video (SV) [6] and
Scale-and-Stretch (SNS) [7] are representative continuous
methods. Both kinds of content-aware approaches remove
pixels or warp the image to the targeted resolution according
to the visual importance of image content. The purpose of
the content-aware image retargeting is to preserve visually
important content and structure (i.e. to reduce information
loss), and at the same time, to limit the visual distortion
in the retargeted image [1], [2], [8]. CR and SCL are two
traditional methods based on geometric constraints without
considerations of image content. In retargeted images by CR,
there is only information loss occurring, while in images
produced by SCL, visual distortions due to squeezing or
stretching degrade the image quality. Since the size reduction
during retargeting is inevitable, most content-aware methods
try to remove or shrink the less important content, and thus
achieve better overall performance by balancing information
loss and visual distortion.

Although there are many image retargeting operators pro-
posed for image resizing, the visual quality evaluation of retar-
geted images is still a challenging task. To measure the quality
of retargeted images, Rubinstein et al. [1] conducted a compar-
ative study of different retargeting operators, and also provided
6 objective quality metrics: Bidirectional Similarity (BDS),
Bidirectional Warping (BDW), Edge Histogram (EH), Color
Layout (CL), SIFT flow and Earth-Mover’s Distance (EMD).
The BDS is a patch based similarity metric formulated with a
bidirectional mapping between two images. For patch in one
image, the matched patch is searched in the other image and
vice versa. The mean distance of these patches is summarized
as the BDS distance. The BDW is one similar metric like
BDS, but the mapping between two images is constrained
to be monotonic. The EH and CL are two low-level metrics
in MPEG-7 standard, where EH uses the histogram of the
spatial edge distribution as the image representation and the
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L1 distance of the two histogram as the image distance, while
similarly, CL is an image descriptor which captures the spatial
distribution of colors in the image. SIFT flow is a recently
proposed across-scene image alignment algorithm and EMD
is a dissimilarity metric between two distributions defined as
the minimal cost to transform one distribution into the other.
Among these metrics, EMD and SIFT flow show the best
agreement with subjective rankings, and the reason might be
that their constrained matching appears to be able to model
the retargeting modification on images more accurately.

The early IRQA work [9] proposed an automatic evaluation
framework for image retargeting in the principle of user
perception based criteria of important content emphasis, global
information coverage and visual distortion reduction. In [10],
Liu er al. exploited global structure and local correspondence
to measure the quality of retargeted images. By traversing
from coarse scales to fine scales, that metric extracted the
global geometric structure and established the local pixel
correspondence in a top-down manner. Finally, based on
the correspondence, the retargeted image is evaluated with
a saliency weighted similarity metric. In [11], Ma et al
investigated the performance of different shape descriptors for
the quality evaluation of retargeted images. Fang et al. [12]
proposed an algorithm (IR-SSIM) to generate Structural
Similarity (SSIM) map to measure the quality of the pre-
served structural information in retargeted images. They first
utilized the SIFT flow to explore the dense correspondence
between the images, and then generated a SSIM map to
measure the amount of the preserved structural information in
the retargeted image. They exploited both bottom-up and top-
down image saliency estimation as the visual importance map
for retargeting. The spatial pooling of the visual importance
map with the SSIM map provided the overall evaluation of
the retargeted image. In [13], Zhang et al. investigated the
features from three determining factors for objective quality of
experience assessment on retargeted images: global structural
distortions (G), local region distortions (L) and loss of salient
information (S), and proposed the GLS metric by fusion with
regression methods. Liu er al. [14] also utilized machine
learning to fuse different quality estimator including spatial
estimator and frequency domain quality estimator to achieve
promising performance.

In [8], Hsu et al. obtained the dense correspondence
between original and retargeted images with SIFT flow
technique as well. By measuring the local variance of the SIFT
flow field between the images, the perceptual geometric distor-
tions are measured, and by measuring the saliency loss during
warping the original saliency map to the target resolutions, the
perceptual information loss is measured. An adaptive fusion
method is proposed to fuse perceptual geometric distortion
and information loss as the overall evaluation of the retargeted
image. However, the relationship between the images are still
not fully investigated and the correspondence estimation has
limitations on finding the retargeting modification.

In traditional Image Quality Assessment (IQA) [15]-[17],
the images are generally assumed to be well-aligned and the
image difference can be obtained by the direct subtraction,
while in IRQA the relationship between the original and
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retargeted images is more complicated due to various kinds of
retargeting modifications. In this paper we propose an efficient
geometric change estimation method to find the relationship
between the original and retargeted images and also a novel
Aspect Ratio Similarity metric (ARS) to predict the visual
quality of retargeted images. Compared to related existing
works, our major contributions are three-fold:

« Firstly, we give a unified interpretation of image retar-
geting and show that the geometric change estimation is
an efficient way to clarify the relationship between the
original and retargeted images.

« Secondly, we formulate the geometric change estimation
as a backward registration problem with the MRF and
provide a practical and effective solution.

o Thirdly, under the geometric change guidance we develop
a novel ARS metric, which is effective and outperforms
other existing methods on publicly available datasets.

The remainder of this paper is organized as follows.

Section II introduces the proposed backward registration based
methodology. We presents the unified interpretation for retar-
geting, the backward registration problem formulation and its
solution. Section III presents the details about ARS metric.
Experimental results shown in Section IV demonstrate that our
metric outperforms other existing metrics. Finally, Section V
concludes the paper and discusses the future work.

II. THE PROPOSED BACKWARD REGISTRATION
BASED METHODOLOGY

The relationship between the original and retargeted images
is complicated due to different kinds of artificial modifica-
tions. To develop effective IRQA metrics, it is important
to discover the undergone image retargeting modification to
clarify the relationship between the original and retargeted
images.

The proposed IRQA framework is shown in Fig. 1. Given
the original and retargeted images, it is necessary to find the
undergone geometric change before the quality evaluation.
We solve the backward registration problem to reveal the
geometric change during image retargeting. We exploit the
geometric change to establish the block correspondence
between the original and retargeted images. For the quality
evaluation, we focus on how the local blocks are modified in
the retargeted image and design a novel ARS metric to assess
the local block changes by considering the information loss
and visual distortion. By pooling it with the visual importance
map, we can predict the overall visual quality of the retargeted
image effectively.

A. Motivation

1) To Evaluate the Retargeted Image: The visual quality
evaluation of retargeted images is a semantic high-level task.
As the analysis in [1], [8], and [12], the objective of image
retargeting is to preserve the important image content while
avoid introducing the visual distortion. However, due to the
complicated relationship between the original and retargeted
images, it is difficult to measure the information loss and visual
distortion directly.
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The framework of the proposed method. The backward registration (blue solid path) aims to reveal the geometric change during the image retargeting

and under the guidance of the estimated geometric change, ARS metric (orange solid path) obtains the objective quality score.
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Fig. 2. Illustration of the visual quality change. To assess the quality of the
retargeted image, we are eager to know how the image content is modified.

Similar to the study [1], it is crucial to capture the retar-
geting modification that the image has undergone without
specifying the retargeting operator. As shown in Fig. 2, it is
helpful for the image retargeting quality assessment to acquire
the details about how the butterfly and flowers are changed.
We suggest that before the quality evaluation it is necessary
to approximate the retargeting modification, so that the image
content in the original and retargeted images can be linked to
find the corresponding quality degradations.

2) IQA vs IRQA: In the traditional IQA, the reference and
distorted images are normally assumed to be well-aligned
and the pixel-to-pixel relationship is self-evident. The com-
mon image distortions like Gaussian noise, blur, and JPEG
compression artifacts are mostly the infensity change, and the
substantial difference can be obtained by the direct subtraction
of two images. In IRQA, it is unlikely to obtain the undergone
artificial retargeting modification on images simply by the sub-
straction. Before the quality evaluation, it becomes necessary
to find the relationship between the original and retargeted
image in distinctly different resolutions.

When we investigate the retargeted image generation
process, we classify the artificial modifications into inten-
sity change and geometric change.! The intensity change
mostly happens in the continuous retargeting operators like

IThe geometric change describes how the retargeted image is resampled
from the original image with the resampling grid (see details in Section II-B).

SCL and WARP when the subpixel interpolation is involved.
The subpixel sampling may create the intensity fluctuations
such as blockiness and aliasing artifacts [2]. The geometric
change refers to the artificial modification on the image grid
to achieve overall resolution alternation. Note, the geometric
change is dissimilar to the change projected in the real
world, like the geometric deformation caused by viewpoint
disparity [18].

In Fig. 3, we investigate the influence of the infensity change
and geometric change on the process of the retargeted image
generation. It includes four groups of retargeted images, the
regenerated images, and error maps. The regenerated images
are built from original images with the estimated geometric
change, so there may be the intensity errors between the
retargeted and regenerated images as shown in Fig. 3(c).
The SSIM [17] quality scores for regenerated images are
1.0000 (CR), 0.9006 (SCL), 0.9366 (SC) and 0.8993 (WARP).
It shows that the regenerated images in Fig. 3(b) are generally
in high quality compared to reference images from Fig. 3(a).
As we can see, with the estimated geometric change it is
feasible to regenerate the nearly identical retargeted image
from the original image. It indicates that the geometric change
plays an important role in the generation of the retargeted
image, and the estimation of the geometric change is an
efficient way to discover the relationship between the given
images. This is the reason that we adopt the geometric change
as the guidance for the image retargeting quality assessment
in Section III.

B. A Unified Interpretation of Image Retargeting

To estimate the geometric change during the image retarget-
ing, it is necessary to have in-depth understanding of different
retargeting operators. Here we formulate different kinds of
retargeting operators in a unified interpretation framework.

We use four representative retargeting operators to intro-
duce the unified interpretation of image retargeting, as shown
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Fig. 3. The influence of the geometric change and intensity change.
(a) Images retargeted by CR, SCL, SC, and WARP. (b) The regenerated
retargeted image from original image according to the estimated geometric
change. (c) The absolute error map between the (a) and (b) images, where
the SSIM scores for the regenerated images are 1.0000 (CR), 0.9006 (SCL),
0.9366 (SC) and 0.8993 (WARP).

in Fig. 4. In each model, the top part is the regular retargeted
image grid (red nodes), while the bottom parts are the regular
original image grid (gray nodes) and the resampling grid
in different shapes (blue nodes). The image retargeting is
interpreted as the resampling grid generation and forward
sampling. The resampling grids are generated in different
shapes according to the retargeting operator and the green
arrows denote the forward sampling from original image by
directly pixel copy or interpolation at subpixel locations, to
construct retargeted images in regular grids.

The CR operator is to manually choose an optimal rectan-
gle window and directly copy the image content within the
window. Instead of the fixed cropping window, the content-
aware discrete methods like SC generalize CR by determining
pixels for removal in a seam-wise or pixel-wise way. The
reserved pixels are collected together to make up the retargeted
image in regular grids. The SCL operator resizes the image
in one direction uniformly. It inflates the resampling grid of
target resolution onto the original image size to cover all the
image content and resamples the image based on the new grid
via the interpolation methods like bi-cubic interpolation. The
content-aware continuous methods like WARP can be regarded
as extensions of SCL, which manipulate the resampling grid
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Fig. 4. Grid models. We give the grid models for four typical
retargeting operators: (a) Cropping (CR) model; (b) Scaling (SCL) model;
(c) Seam-Carving (SC) model (the bold black lines are the removed seams);
(d) Non-homogeneous Warping (WARP) model. Note that the blue grid L is
the resampling grid and the yellow region L. is the continuous resampling
space in the Section II-C.

consistently in a more sophisticated way by certain energy
minimization process.

With these grid models, we are able to interpret the
image retargeting with two steps: resampling grid generation
and forward resampling. The resampling grids for discrete
methods are special cases of the grids for the continuous
methods at the sub-pixel level, thus we can adopt the subpixel
level resampling grid to model different retargeting operators.
Accordingly, if the resampling grid coincides with the original
image grid, a.k.a. at pixel level, the forward resampling process
is the direct pixel copy; otherwise, the retargeted image pixels
are resampled at the sub-pixel location with the adopted
interpolation method.

Obviously, we can conclude that the retargeted image is
almost determined once the resampling grid is generated. The
resampling grid represents the geometric change of the image
during the retargeting process and is the strong evidence about
the retargeting modification details. As we can observe, the
part with dense resampling grid reserves more image content
while the zero-density parts can remove the corresponding
image region. The sophisticated retargeting operators usually
try to preserve visually important content through dense sam-
pling and shrink or even remove other visual unimportant
content through sparse or zero sampling. On the other hand,
some retargeting operators may destroy the regularity of the
resampling grid in the important regions like foreground
objects, people, and faces, which would cause the obvious
annoying visual artifacts.

C. Backward Registration Problem Formulation

According to the unified interpretation above, we need to
estimate the resampling grid to reveal the geometric change
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Fig. 5. Markov Random Field (MRF) model for backward registration. The
red node p corresponds to the observed pixel in the retargeted image. The
blue node !/ is the resampling location (x, y) from the resampling grid, and
the subscripts {L, T', B, R} denote the four-connected neighborhood. The aim
is to estimate the resampling grid, which is the estimation of the resampling
location for each pixel from the retargeted image.

for IRQA. Compared to the forward resampling, to reveal the
resampling grid is a reverse problem, and here we formulate
it as a backward registration problem with Markov Random
Field (MRF). Given the original and retargeted image pair
I = {lorg, Irer}, the retargeted image grid is chosen as the
graph for labelling. We denote P as the set of pixels in I,
L as the resampling grid, and L. as the continuous resampling
space corresponding to the /¢, as shown in Fig. 4. In Fig. 5,
assume p € P is the observed pixel from the retargeted image
and in grid L, each node [, = (x,, yp) € L is the unknown
resampling location for pixel p, where the coordinates are
(xp,yp) €R.

Without loss of generality, there are two assumptions about
the resampling grid: the uniqueness assumption and ordering
assumption. The uniqueness assumption is that each pixel in
Ir¢; has one unique resampling point in /¢, which is a one-
to-one mapping between the pixels in /., and the resampling
grid L. The uniqueness assumption is used to exclude the
forward registration as we will discuss in Section II-E. The
resampling grid L following the ordering assumption should
be monotonic without any fold, which is reasonable for
qualified image retargeting operators, otherwise the image
resampled based on the resampling grid would be incom-
plete. The grid nodes (x;,y;) € L satisfy the constraints
s.t. x;p < xjy1 and y; < yjy1, where i, j € N. It indicates
the ordering of the resampling location for retargeted image
should be same to the pixel ordering in the original image.

We model the resampling grid with the MRF and the back-
ward registration problem can be formulated as the labelling
problem for retargeted image pixels in the energy minimization
framework as Eq. (1).

E =Eq+ AE; (1

The data term E; describes the likelihood that pixel p is
resampled from the location [, in the original image based
on the similarity distance of them

Eq =) dp(f(p), [I,))) )
p

where d), is the distance between the feature f(p) for p and
the feature f(/,) at location (x,, y,) may be involved with
subpixel interpolations when (x,, y,) ¢ N.
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The smoothness term E; is corresponding to the ordering
assumption in the modelling assumption

Eq= > Vil 3)
(p.)eN

where A is the local neighborhood in the four-connected
retargeted image grid. V (I, [;) measures the cost of assigning
two resampling locations /,, and [, to the neighboring pixels.
The smoothness term is used to achieve the smooth
monotonic resampling grid, while the well-designed data term
contributes to the accurate backward registration results.

D. Backward Registration Problem Approximation

There are several algorithms such as graph-cut and
loopy belief propagation to solve the energy minimization
problem [19]. To solve the problem, we first consider
the label space for the resampling grid. When L. is the
continuous resampling space, the space can be very large (say
10° — 10%) even when we quantize it at the quarter subpixel
precision. It means that the complexity of the data term Dy
is extremely high. Moreover, the subpixel precision f(I,) in
the I,r, is always related to the interpolation, which is also
time-consuming.

A practical way is to approximate the model by replacing
the continuous space L. with the pixel-level discrete space L.
With the consideration that the subpixel error of the resampling
grid is quite small compared to the space L, the tradeoff
between the subpixel accuracy and fast approximation is
worthy as long as the designed IRQA metric is robust to the
backward registration errors.

Let p € P be the pixel from the retargeted image and in
grid L each node [, = (x,, y,) € Ly be the hidden resampling
location for pixel p, where the coordinates are (x,, y,) € N.

1) Objective Energy Minimization: The objective function
Eq. (1) is defined as:

>l = ranl, @)

Z min(a |xp — Xgq

(p.q)ee

Eq

Eg

,d)+min(a |yp — Vg

,d) (5)

where the truncated L1-norm distance metric is used in the
smoothness term to make the objective function robust to
outliers and large discontinuities with d as the threshold. The
€ is the four-connected neighborhood in the retargeted image
grid. We adopt energy function minimization implementation
in [20], which is a dual-layer loopy belief propagation based
algorithm and utilize a coarse-to-fine scheme to speed up the
optimization. The implementation parameters are the default
setting a = 2, d = 40, A = 1, nlterations = 60 and the
adaptive pyramid level nlevels = [logog(MAX (W, H)/10)]
for the original image in W x H resolution, where [-] is the
ceiling operation.

2) A Hybrid Descriptor: The smoothness term mainly guar-
antees a smooth monotonic resampling grid, while the feature
descriptor choice in the data term is important to obtain
accurate backward registration results. To get an accurate
backward registration results, we develop a hybrid feature
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descriptor by using CIE-Lab intensity component, dense SIFT
descriptor and the relative position component

fp = [Labyx3 SIFT| 128 Posix2] (6)

The intensity component is the pixel intensity in CIE-Lab color
space. Since the intensity change due to subpixel interpolation
is minor, the intensity value is reliable for the likelihood esti-
mation. However, it is not distinctive enough when there are
similar pixels in the neighborhood. Recently the dense SIFT
descriptor has shown promising performance for matching
across scene [20], where the SIFT descriptor is the histogram
of the gradient information in the local neighborhood. With the
dense SIFT component, the included local neighbor informa-
tion helps to formulate a distinctive descriptor. With these two
components, the feature descriptor might still be ineffective at
the smooth or textureless regions. Thus, we also adopt the
relative positions of the pixels as the third component. For
each image, the pixel coordinates are normalized into the range
of [—1,1]. The relative position component complies with
the ordering assumption for the resampling grid and has the
tendency to inflate the retargeted image grid onto the original
size.

E. Forward, Backward, or Bi-Directional Registration

The backward registration results are shown in Fig. 6.
In each group, the first row is the retargeted image and
the second row is visualized backward registration result
by distributing retargeted image pixels onto their resampling
locations. We can find that the revealed resampling grids
are quite appealing for different retargeting operators. The
accuracy evaluation for the backward registration solution is
shown in Section IV-B.

The contrary way is the forward registration and obviously
we can formulate the model with the original image grid as
the grid graph and the retargeted image as the resampling
space. The objective function and solution can still be the
same. One may wonder whether the forward registration can
reveal the geometric change similarly, although it is obviously
inconsistent with our unified resampling interpretation and the
results are not the resampling grid as well.

In Fig. 7 we provide a comparison sample to show the draw-
backs of the forward registration. To better visualize the differ-
ence, we choose the CR operator with the consideration of its
apparent cropping window. The information loss measurement
is perceptual intuitive and also suitable as the measurement
for comparison. We create a toy visual importance map as
Fig. 7(c) with horizontally different colors. In Fig. 7(e), it is
the visualized forward registration results by reconstruction
with the retargeted image pixels. There are three parts to
be noted: the red rectangle is the chosen cropping window,
the gray regions are the pixels which have no appropriate
matches in the retargeted image, and the region within the
green box represents the pixels that find the wrong matches
in the retargeted image. In this case, the data term cannot find
any suitable match. The remaining effective smoothness term
for these pixels is reversed and we can see the matches in the
yellow dash box are mirrored compared to the correct matches
on their right side.
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To measure the information loss based on the forward
registration results, one feasible way is to warp the visual
importance map to the retargeted image size and mea-
sure importance loss amount compared to the original one.
In Fig. 7, (d) and (f) are two warped visual importance maps
in the scan-order from top-left to right-bottom, and top-right
to left-bottom, respectively. There are obvious holes in the
warped importance maps. The reason is that the mismatches
for the removed part override the correct matches due to the
many-to-one mapping. This will seriously disturb the informa-
tion loss measurement. In contrast, the backward registration
satisfied with the uniqueness assumption can avoid the unnec-
essary matches. Similarly, in the bi-directional registration,
there is the same problem in the forward part and only the
backward part is useful. In Fig. 7(g) and (h) the backward
registration results reveal the cropping window correctly and
based on the estimation we can measure information loss in a
reliable way.

III. ASPECT RATIO SIMILARITY (ARS) METRIC

As discussed in the previous sections, the geometric change
can effectively clarify the relationship between the original
and retargeted images. The well-estimated geometric change
captures the detail information about how images are retar-
geted. If we partition the original image into regular blocks,
with its guidance we can establish the retargeted blocks in
the retargeted images and then estimate whether they are
well-preserved, removed or distorted. To effectively evaluate
the visual quality of the retargeted image, here we design
a novel Aspect Ratio Similarity (ARS) metric by measuring
the local block changes between the original and retargeted
images.

The purpose of image retargeting is actually the Aspect
Ratio (AR) alternation for the entire image. The global AR
change is achieved with the local AR changes collaboratively
across the image. The AR changes of the local blocks indicate
how they are preserved in the retargeted image, based on which
we can measure their information loss and visual distortions.
Therefore, the visual quality of retargeted images can be
assessed by measuring the local AR changes.

As shown in Fig. 1, the original image is divided into N x N
regular blocks and their corresponding retargeted blocks are
established in retargeted image under the geometric change
guidance. More results are shown as the third row in Fig. 6.
We calculate the maximal width w,.; and maximal height £,
of each retargeted block. The height and width change ratios
can be denoted as r, = wre,/N and rp, = hm/N, and the
mean ratio u, = (r,, + rp)/2 denotes the absolute block size
changes. The similarity score of the block pair is formulated

as follows:
S: 2-rw Zh +C . I:e_a(ﬂr_l)z] (7)
rz+rp+C

where C is a small positive constant to increase the stability
by avoiding the division by zero and the a is the parameter
larger than zero to balance the information loss and visual
distortions by adjusting the information loss penalty degree.
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Fig. 6. Backward registration results. We provide the results for images retargeted by eight retargeting operators. In each group, the first row is the retargeted
image; the second row is the backward registration result, which reveals the geometric change; in the third row under the guidance of the geometric change,
we establish the retargeted blocks corresponding to the regular blocks in the original image. (a) CR. (b) SCL. (c¢) SC. (d) WARP. (e) MOP. (f) SM. (g) SNS.

(h) SV.

In Eq. (7), the first Aspect Ratio (AR) term measures the
aspect ratio similarity between the block pairs. Since the aspect
ratio loses the absolute size change information, in the second
Absolute Size (AS) term we utilize the Gaussian function of
the mean ratio of u, to take into account the absolute size
change influence. When § is close to 1, the block content
in the original image is generally preserved in high quality,
while when S is close or equal to zero, it indicates that the

retargeted block is suffering from serious information loss or
visual distortions.

To predict the visual quality of the whole retargeted image,
we utilize the saliency detection method [21] specifically
designed for image retargeting to calculate the saliency map
as our visual importance map. The visual quality score ARS
for the retargeted image is defined as Eq. (8) by pooling
the similarity score of each block with the corresponding
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Fig. 7. A comparison of forward and backward registration with the infor-
mation loss measurement. (a) The original image. (b) The retargeted image
by CR with 50% width reduction. (c) A toy visual importance map. (e) The
forward registration results. (d) and (f) are two warped visual importance maps
based on forward registration results. (g) The backward registration results.
(h) The reserved visual importance map based on backward registration
results.

importance weight.

ARS:ZZSmn.an/ZZan ®)

where S),,;,, represents similarity score S for block (m, n), V,,,
denotes the sum of the visual importance value within the
block (m, n), where the visual importance map is partitioned
regularly in the same way as the original image; m and n are
the block indices in the original image.

To obtain more intuitive understanding of ARS metric, we
provide one toy example to show the quality measurement
for different types of block changes in Fig. 8. The original
toy image (a) is retargeted to image (b) via the combination
of CR and SCL. We investigate the typical well-preserved,
totally removed, and horizontal uniformly scaled blocks. The
block By is well-preserved from the original image, and thus
both AR and AS terms are equal to 1. As we all know, if
one image is uniformly down-scaled in both width and height,
there should be little visual artifact. When we uniformly down-
scale the local blocks, AR term is always equal to 1 and AS
term takes account of the overall size changes for information
loss. When it comes to the extreme case, e.g. totally removed
block Bj, AR term is still equal to 1 while AS term reduces
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(a) (b)

(©) (d

Fig. 8. A toy example for ARS metric. (a) Original image (512 x 384).
(b) Retargeted image (192 x 384). We crop out the middle half of the original
image as (c) and then the scale the right half by 50% width reduction as (d).
The original image is divided into 64 x 64 regular non-overlapped blocks as
(c) and the corresponding retargeted blocks are shown in (d). The block Bj
is totally removed, Bj is well-preserved as By, and B3 is scaled to Bs.

TABLE I
BENCHMARK DATASETS FOR IRQA EVALUATION

Dataset MIT CUHK
Source Image No. 37 57
Retargeted Image No. 296 171
Retargeted Image -25% No. 184 46
Retargeted Image -50% No. 112 125
Retargeting Operator No. 8 10
Subject No. 210 64

Subjective Score Type Pair-wise MOS

to the minimal e~*. For the horizontal scaling case from B3
(64 x 64) to Bs (64 x 32), AR term becomes to 0.8 and AS
term reduces to e ?9% We can see that AR and AS terms
are used to evaluate the information loss and visual distortion
for each block collaboratively.

IV. EXPERIMENTAL RESULTS
A. Image Retargeting Datasets

In the experiments, we adopt two widely used public
datasets: MIT RetargetMe dataset [22] and CUHK dataset
[23], [24] to evaluate the performance of the proposed objec-
tive quality metric, in terms of the correlation between the
objective scores and the subjective scores provided in the
datasets. The detailed information of these datasets are sum-
marized in Table 1.

In MIT dataset, there are 37 source images and their
retargeted images are generated by eight retargeting operators
including CR, SCL, SC [3], MO [25], SM [4], SNS [7], SV [6],
and WARP [5] with 25% (23P) or 50% (14P) of width or
height reduction. There are six major image attributes pro-
vided for better insights: Line/Edge, Face/People, Foreground
Objects, Texture, Geometric Structures and Symmetry, and
each image may own more than one attribute. The subjective
tests are conducted in the way of the paired comparison, where
subjects choose the better one from two retargeted images
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shown in juxtaposition. The dataset provides the corresponding
numbers of times that the retargeted image is favored over
others as the subjective scores. The correlations between the
objective and subjective scores are measured by the Kendall
Rank Correlation Coefficient (KRCC) [1]:

ne —Ng
0.5n(n — 1)

where n is the length of the ranking (here n = 8), n. is the
number of concordant pairs and n, is the number of discordant
pairs from all the pairs.

The CUHK dataset contains 171 retargeted images
generated from 57 natural source images. Compared to MIT
dataset, two other retargeting operators, optimized seam-
carving and scale (SCSC) [26] and energy-based deformation
(ENER) [27], are included as well. Each original image
can be retargeted by either 25% or 50% of the width or
height reduction. Different from the pair-wise comparison in
MIT dataset, the subjective tests employ 5 category quality
scales as “Bad”, “Poor”,“Fair”, “Good”, and “Excellent”, and
generate the Mean Opinion Score (MOS) for each retargeted
image, which serves for the correlation evaluation between
subjective MOSs and the objective scores like the traditional
subjective testing in IQA [15], [17].

In CUHK dataset, four commonly used evaluation metrics
are employed to evaluate the relationship of the objective
quality metric scores and the provided MOSs. The first one
is the Pearson Linear Correlation Coefficient (LCC) between
MOS and the objective scores after nonlinear regression. The
nonlinear regression is the mapping function suggested by
Sheikh et al. [28]:

KRCC = )

1

1
fx)=p (5 - m) + fax + Ps (10)
The second metric is the Spearman Rank-order Correla-
tion Coefficient (SRCC), which can measure the prediction
monotonicity of the objective IRQA metric scores. The third
metric is the Root Mean Squared Error (RMSE) between MOS
and the objective scores after nonlinear regression. The fourth
metric, the Outlier Ratio (OR) [29] is the ratio of the false
objective score number to the total score number. The false
score means that the score lies outside the interval [MOS-20,
MOS+20] after the nonlinear regression, where ¢ is the
corresponding standard deviation. As we can see, larger LCC
and SRCC values indicate that the objective metric scores
correlate better with the subjective MOSs. In other words, the
performance of the objective metric is better. The other RMSE
and OR metrics correspond to the correlation errors, thus the
smaller values indicate the better objective quality metrics.

B. Accuracy Evaluation of Backward Registration

1) Dataset With the Groundtruth: To evaluate the accuracy
of the geometric change estimation by backward registration,
it is necessary to provide a dataset with the retargeting
modification as the ground-truth information. However, due
to limited number of retargeting operators that provide the
source codes, here we only choose the Seam-Carving [30] and
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Fig. 9.

One sample from the validation datasets. (a) The original image.
(b) The image retargeted by SC with 25% width reduction. (¢) The ground-
truth for (b): a binary map indicating the removed pixels (black regions are the
removed seams). (d) The image retargeted by SNS with 50% width reduction.
(e) The approximated ground-truth map for (d).

Scale-and-Stretch (SNS)? [7] to build the validation datasets
as shown in Fig. 9. We use source images from both MIT and
CUHK dataset. In MIT part, we use the 37 source images from
MIT dataset [22] and retarget the images into similar target
resolutions. In CUHK part, we choose the 57 source images
and build all the images by retargeting each image with 50%
width reduction. In Fig. 9(c), the black regions represent the
removed seams by SC. With the binary map we can reconstruct
the identical retargeted image by removing the pixels in
black regions. In Fig. 9(e) it is the approximated ground-
truth map for SNS. Since the ground-truth information for
the continuous image retargeting operators is the resampling
grid, we brutally transform the resampling grid into the binary
map by approximating each resampling point to its nearest-
neighbor pixel for the visualization.

2) Backward Registration Accuracy: The performance eval-
uation of the backward registration results on the validation
datasets is shown in Table II. The performances of dif-
ferent kinds of descriptors including SIFT, Lab, SIFT+Lab
and the proposed descriptor are evaluated on SC and
SNS sets. According to the unified resampling framework
in Section II-B, the backward registration accuracy can be
effectively evaluated by measuring the similarity between
ground-truth and the estimated resampling grids. Here we
adopt the Mean Absolute Error (MAE) as the main accuracy
measure:

1 N
MAE = = > | (i, 0) = (£ 3D an
i

where (x;, y;) is the ground-truth resampling point and (x;, y;)
is the estimated resampling point; N is the total number of
pixels in the retargeted image.

The discrete SC can be regarded as a special case of
the continuous retargeting operators. For images retargeted

by SC, the accuracy can be measured by whether we have

2To obtain the ground-truth information, we implement the SNS in
MATLAB and the code is public available at yabinzhangjohn.github.io.
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TABLE 11
PERFORMANCE OF BACKWARD REGISTRATION ON VALIDATION DATASET

Set Descriptor MIT part CUHK part
Rc Pr R, MAE Rc Pr R, MAE
SIFT 0.7831 0.8023  0.034 14.231 0.6277 0.6769  0.077  38.009
sc Lab 0.8045 0.8175 0.022 11.383 0.6767 0.6996  0.034 20914
SIFT+Lab 0.8164 0.8322  0.024 7.977 0.7075  0.7367  0.040  15.333
Our descriptor ~ 0.8257  0.8336  0.014 4228 0.7304 0.7410  0.014 6.425
SIFT 0.6306  0.6524 -0.043 25.856 0.4838 0.5279 -0.090 60.271
SNS Lab 0.7785 0.7806  -0.003 8.816  0.6542 0.6621 -0.013  22.605
SIFT+Lab 0.6905  0.6952  -0.008 7.058 0.5695 0.5825 -0.023 16.192
Our descriptor  0.6947  0.6949  -0.001 3.723  0.5806 0.5812  -0.001 7.888
TABLE III
PERFORMANCE OF DIFFERENT METRICS ON MIT DATASET
. mean KRCC in each subset Total
Metric
Line Faces  Foreground Geometric mean std
Edge  People Objects Texture Structure Symmetry KRCC KRCC Lee p-val
BDS 0.040  0.190 0.167 0.060 -0.004 -0.012 0.083 0.268 0.134  0.017
EH 0.043 -0.076 -0.079 -0.060 0.103 0.298 0.004 0.334  -0.033 0.641
SIFT flow 0.097  0.252 0.218 0.161 0.085 0.071 0.145 0.262 0.227  0.031
EMD 0.220  0.262 0.226 0.107 0.237 0.500 0.251 0.272 0.274 le-5
CSim 0.097  0.290 0.293 0.161 0.053 0.150 0.164 0.263 0.242  0.028
IR-SSIM 0.309  0.452 0.377 0.321 0.313 0.333 0.363 0.271 0.439 le-3
PGDIL 0.431 0.390 0.389 0.286 0.438 0.523 0.415 0.296 0.468  6e-10
Proposed ARS 0463  0.519 0.444 0.330 0.505 0.464 0.452 0.283 0.567 1le-11

find the removed pixels correctly, so we utilize the Recall (Rc),
Precision (Pr), and the overlapped ratio R, as the additional
accuracy measurement. Here, R, refers to the percentage of
pixels in retargeted image with same resampling locations as
other pixels, and in the ideal situation R, should be equal
to zero. We extend these metrics to evaluate the accuracy on
images retargeted by SNS. To make it feasible to measure Rc,
Pr and R,, we take the brutally approximated binary maps
instead of the ground-truth resampling grids for SNS set.

In Table II the experimental results show that our descrip-
tor achieves the best overall performance. The MAE results
show that our descriptor can estimate the resampling grid
more accurately. For the Rc, Pr, and R, on SC validation
set, the results show the hybrid descriptor is more advan-
tageous. On SNS validation set, the Lab descriptor shows
better Recall and Precision performance. The reason is that
the Lab descriptor, without neighborhood information, makes
the backward registration a too greedy search strategy for the
warping cases with serious deformed resampling grids. As we
can see, the MAE for Lab descriptor is still quite large.
Since the images in CUHK part are all retargeted with 50%
width reductions, where the discontinuities and deformations
in retargeted images are more serious, the overall performance
is relatively lower compared to MIT part. Although the single
SIFT descriptor or Lab descriptor is capable to reveal the
resampling grid, the proposed hybrid descriptor shows sig-
nificantly better performance. The overall performance of the
backward registration is satisfactory, which is consistent with
the results in Fig. 6, and with its guidance different IRQA
metrics can be further developed.

C. Performance Evaluation of ARS on the MIT Dataset

To demonstrate the effectiveness of the proposed ARS
metric, we present rank correlation results on the benchmark
MIT dataset RetargetMe [22] in Table III. The proposed
ARS is compared with BDS [31], EH [32], SIFT flow [20],
EMD [33], CSim [10], IR-SSIM [12] and PGDIL [8]. We
have adopted the same saliency detection method [21] as the
IR-SSIM and PGDIL.

We give the mean and standard deviation values of the
rank correlations as well as p-value and linear correlation-
coefficient (LCC) in Table III. From this table, we can see that
the proposed ARS can obtain statistically better performance
than the state-of-the-art methods and in image subsets labelled
by different attributes except Symmetry, the proposed metric
achieves the best correlation results among the compared
methods. The relative lower performance in Symmetry attribute
subset shows the limitation of ARS in the measurement of the
global and semantic structures distortions.

D. Performance Evaluation of ARS on the CUHK Dataset

In Table IV, we compare the performance of the proposed
ARS with with BDS [31], EH [32], SIFT flow [20], EMD [33],
CSim [10], GLS [13] and PGDIL [8] on CUHK dataset. The
performance is measured by LCC, SRCC, RMSE and OR.
As shown in Table IV, the proposed ARS performs consistently
better than other metrics significantly.

In Fig. 10, we show the scatter plots of subjective scores
against objective scores predicted by PGDIL and ARS on
CUHK dataset. The curves in Fig. 10 were fitted by the
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TABLE IV
PERFORMANCE OF DIFFERENT METRICS ON CUHK DATASET

Metric LCC SRCC RMSE OR
BDS 0.2896  0.2887 12922 0.2164
EH 0.3422  0.3288  12.686  0.2047
SIFT flow 0.3141 0.2899 12.817 0.1462
EMD 0.2760  0.2904 12977  0.1696
CSim 0.4374 0.4662 12.141  0.1520
GLS 04622 04760 10.932  0.1345
PGDIL 0.5403  0.5409 11.361  0.1520
Proposed ARS ~ 0.6835  0.6693  9.855  0.0702

MOS
MOS

4
20 20 n
+ [+ Imagesin CUHK dataset +  Images in CUHK dataset
—— Fitted curve —— Fitted curve

04 09 1 065 07 075 08 08 09 0% 1
Objective score by ARS

05 06 07 08
Objective score by PGDIL
(a) (b)

Fig. 10.  Scatter plots of subjective MOS against objective scores obtained
by model prediction on CUHK dataset. (a) The PGDIL. (b) Proposed ARS.

nonlinear regression using Eq. (10). As we can see, objective
scores predicted by ARS are more correlated with subjective
scores compared to the state-of-the-art PGDIL scores.

V. CONCLUSION AND FUTURE WORK

To better understand the image retargeting, we have first
provided a unified interpretation of image retargeting with the
resampling grid generation and forward resampling. We shown
that the geometric change estimation is an efficient way to
clarify the relationship between the original and retargeted
images. We formulated the geometric change estimation as
a backward registration problem via MRF and provided an
effective and practical solution. Under the guidance of the
geometric change, we have developed an effective ARS metric
by exploiting the local block changes to evaluate the visual
quality of retargeted images. Compared to other existing IRQA
metrics on the publicly available MIT and CUHK datasets,
the proposed ARS yields statistically better results in the
prediction accuracy.

The proposed ARS metric shows the success by measuring
the local block changes under the geometric change guidance.
Even though ARS metric is designed based on the local
low-level features and it is infeasible to explicitly evaluate
the specific attribute degradations such as the broken line and
violated symmetry, it still outperforms other existing metrics.
Some recent studies have already investigated the influence of
specific attributes like Line, Symmetry and Aesthetics both for
image retargeting and its quality assessment [6], [34]-[37].
In the future work, we will explore additional detection
techniques for attributes like Line/Edge and Symmetry.
With the geometric change we can establish the attribute
correspondence between the original and retargeted images.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 9, SEPTEMBER 2016

The explicitly evaluation of corresponding attribute quality
degradation may help develop better IRQA metrics.
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