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No Reference Quality Assessment for Screen
Content Images With Both Local and
Global Feature Representation

Yuming Fang

Jinjian Wu

Abstract—1In this paper, we propose a novel no reference
quality assessment method by incorporating statistical luminance
and texture features (NRLT) for screen content images (SClIs)
with both local and global feature representation. The proposed
method is designed inspired by the perceptual property of
the human visual system (HVS) that the HVS is sensitive to
luminance change and texture information for image perception.
In the proposed method, we first calculate the luminance map
through the local normalization, which is further used to extract
the statistical luminance features in global scope. Second, inspired
by existing studies from neuroscience that high-order derivatives
can capture image texture, we adopt four filters with different
directions to compute gradient maps from the luminance map.
These gradient maps are then used to extract the second-
order derivatives by local binary pattern. We further extract
the texture feature by the histogram of high-order derivatives
in global scope. Finally, support vector regression is applied
to train the mapping function from quality-aware features to
subjective ratings. Experimental results on the public large-scale
SCI database show that the proposed NRLT can achieve better
performance in predicting the visual quality of SCIs than relevant
existing methods, even including some full reference visual quality
assessment methods.

Index Terms— Screen content image, visual quality assessment,
no reference quality assessment, local feature, global feature.

I. INTRODUCTION

ECENTLY, more and more screen content images (SCIs)
emerge over Internet, and they are widely used as the
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medium of signal transmission in many multimedia appli-
cations. Currently, many relevant algorithms for SCI have
been proposed, including SCI segmentation [4], SCI compres-
sion [5], SCI quality assessment [16], [53], [54], etc. Undoubt-
edly, visual quality of SCIs has a great influence on users’
viewing experience. Generally, visual quality of SCIs might be
degraded with various distortion types during image process-
ing including acquisition, transmission and coding [1], [2].
Therefore, it is highly desired to design effective visual quality
assessment (VQA) metrics for SCIs in various SCI processing
applications.

There have been a number of visual quality assess-
ment (VQA) methods devised in recent years. Traditional
VQA methods such as mean square error (MSE) and peak
signal to noise (PSNR) have been widely used in industry due
to their simple implementation. However, the predicted quality
results from these methods are not consistent with subjective
ratings, since these methods predict visual quality of images
without considering the characteristics of the human visual
system (HVS). In order to overcome the shortcomings of these
methods, many advanced full reference (FR) methods which
require complete reference information for image quality pre-
diction with consideration of the characteristics of the HVS
have been proposed, including structure similarity (SSIM) [6]
and its variants: multi-scale SSIM (MSSIM) [7], informa-
tion content weighted SSIM (IWSSIM) [8], feature similar-
ity (FSIM) [9], internal generative mechanism (IGM) [10],
visual saliency-based index (VSI) [11], gradient magnitude
similarity deviation (GMSD) [12].

There have been also many reduced reference (RR) [22],
[24], [48], [49], and no reference (NR) image quality estima-
tion methods [13], [14], [17], [42], [43], [46], [47] proposed
in the past decades. For RR methods, only part of reference
information is required for image quality prediction, and global
features are always extracted as the indicator of image quality.
For NR methods, they do not require any reference information
for VQA. Fang et al. [43] built nature scene statistics (NSS)
models for NR VQA of contrast distorted images based on
moment features. There have been several NR metrics [44],
[45], [57] proposed based on one type of local structure
descriptor: the local binary pattern (LBP) [38]. Zhang et al.
designed a NR metric based on the joint generalized local
binary pattern (GLBP) statistics in [44], and Freitas et al.
proposed a NR model based on texture information extracted
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from multiple local ternary pattern (LTP) channels in the form
of histograms [45]. Li et al. designed a NR VQA model
to calculate structure degradation based on the perceptual
property in the HVS that there are separate mechanisms in
human visual cortex to process the first- and second-order
patterns [57]. Zhang et al. [58] proposed NSS models with the
consideration of fitting parameters of NSS models and the fit-
ting errors between real distributions and fitted NSS models as
well as the likelihood of fitting error. In natural image quality
evaluator (NIQE) [17], the authors designed a NR VQA metric
by using the deviations from the nature scene statistic model in
natural images. Zhang et al. recently proposed the integrated-
local NIQE (IL-NIQE) based on multivariate Gaussian model
with three additional statistical features based on NIQE [46].
Xue et al. [56] designed a quality-aware clustering approach
named QAC to learn a series of centroids, which are then
used to calculate the visual quality scores of image patches.
The overall perceptual quality of distorted image is obtained
by average pooling of the quality scores of image patches.

Most existing VQA methods are designed for natural images
and they are not effective in visual quality prediction of SClIs.
Unlike natural images, SCIs include diverse forms of visual
content, such as pictorial and textual regions. As shown in our
previous study [16], the characteristics of SCIs and those of
natural images are different greatly. Generally, the mean sub-
tracted contrast normalized (MSCN) coefficients [39] extracted
from natural images follow generalized Gaussian distribution,
while the distribution curve of MSCN coefficients from SCIs
fluctuates greatly and a sharp pimpling appears [16]. Thus,
the VQA metrics designed for quality prediction of natural
images are not effective for VQA of SCls.

Recently, there have been some metrics designed for visual
quality prediction of SCIs. Yang et al. [16] conducted an user
study for visual quality prediction of SCIs and presented a
detailed analysis of the subjective experiment. In addition,
they built an objective quality assessment metric for SCIs.
Wang et al. [19] designed a FR VQA metric for SCIs by
incorporating local information content weighting and viewing
field adaption. Fang er al. proposed a FR objective VQA
model for SCIs based on uncertainty weighting with the
consideration that the HVS is more sensitive to high-frequency
information than other smooth regions in the visual scene [20].
Gu et al. designed a structure-induced quality method (SIQM)
by weighting the quality map with the proposed structural
degradation strategy [21]. Ni et al. proposed a VQA model
for SCIs based on gradient direction denoted by GSS [53] and
edge information denoted by EMSQA [54] and ESIM [55].
In the study Wang et al. [22] designed a RR image quality
assessment (RR-IQA) metric for SCIs by considering visual
perception of SCIs. Wang et al. [59], conducted studies on
subjective quality evaluation of the compressed SCIs and
designed a RR quality prediction model in wavelet domain.
These methods mentioned above require the complete infor-
mation of reference image. However, the original images
are not available in most practical applications. Gu et al.
proposed a NR quality estimation method for SCIs (BQMS)
with structural degradation model and the free energy based
perceptual theory, and established a large scale database to
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train NSS models [23]. Shao et al. [25] proposed a blind
quality predictor for SCI (BLIQUP-SCI) from the perspective
of sparse representation. These two NR VQA metrics designed
for SCIs cannot obtain consistent visual quality estimation
results with human perception. It is still challenging to design
effective NR VQA metrics for SCIs.

It is well known that the HVS is sensitive to edge informa-
tion [26]-[28], which is the basic component in textual regions
and high-frequency parts of the pictorial regions in SClIs.
Thus, we use the edge information to measure the visual
distortion in SCIs. Meanwhile, the variation of luminance
information is also highly correlated with the visual quality of
visual scenes [29], [30]. In this study, we propose a novel no
reference visual quality estimation method for SCIs by statis-
tical luminance features and texture information (NRLT) with
both local and global feature representation. First, we extract
luminance map of SCIs through the local normalization to the
original intensity map to calculate the statistical luminance
features. Then four filters with different directions are adopted
to compute the gradient maps based on the luminance map,
which are denoted as the first order derivative information. The
texture features are calculated by local binary patterns (LBPs)
on the gradient maps which are denoted as the second order
derivative information. We further utilize the histogram to
represent statistical luminance and texture features in global
scope. Support vector regression (SVR) is employed to train
the visual quality estimation model from the quality-aware
features to subjective ratings. Experimental results on a large-
scale SCI database show that the proposed NRLT can obtain
better performance in estimating the perceptual quality of SCIs
than other relevant ones, even including some FR methods.

There is much difference between the proposed method
and other existing ones. In RR-IQA [22], the authors first
computed the significance maps of original SCI and dis-
torted versions by incorporating the primary visual information
and the uncertainty measure, and utilized the histogram to
represent the combined significance maps [22]. The final
quality score of the distorted SCI is obtained by compar-
ing these two histograms. Compared with that method [22],
the proposed method extract statistical luminance and texture
features without any reference information to perceive the
quality degradation of distorted SCIs. In BLIQUP-SCI [25],
the authors used four FR methods including PSNR, SSIM,
FSIM and VIF [31] to generate the labels for SICs. However,
these four FR methods are with poor performance in predicting
the visual quality of SCIs [16]. In the proposed method, we use
the subjective quality scores of SCIs as the labels to train the
visual quality prediction model. Meanwhile, BQMS [23] needs
to fit the relationship of the structure degradation features
and the free energy feature before extracting the quality-aware
features, while we use the histogram to represent the statistical
luminance and texture features directly.

II. PROPOSED METHOD

In this section, we describe the proposed NRLT for SCIs in
detail. As shown in the study [16], the luminance change and
texture variation influence the visual quality of SCIs greatly
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Fig. 1. The visual examples of SCIs [16].
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Fig. 2. Pairwise products computed along different directions: horizontal,
main-diagonal, vertical, and secondary diagonal.

as well as that for natural images [6]. Meanwhile, the main
difference between SCIs and natural images is that there are
textual regions in SCIs as shown in Fig. 1, and the human
attention is easily attracted to understand the meanings of the
words. In this study, the luminance and texture features are
employed to capture the perceptual distortion in SCIs. First,
we apply the local contrast normalization to SCIs to eliminate
the redundant information in visual scenes [39]. Then the
statistical luminance features are represented in the form of
histogram. The four filters with different directions as defined
in Fig. 3 are adopted to compute gradient maps, which are then
used to extract the second order derivatives by employing LBP
descriptor. Furthermore, we extract the texture information by
the second order derivatives. The feature vector is composed
of statistical luminance and texture features calculated in three
scales. Finally, SVR is adopted to train the quality estimation
model from the quality-aware feature vector to subjective
ratings.

A. Feature Extraction

As introduced above, we extract luminance and texture
features to capture the variations of SCIs. Here, we extract the
statistical luminance features from the normalized luminance
map. The normalization operation is conducted as [17]:

S, j) = —"—— (D

oy +C
where S(i, j) and S’(i, j) denote the original and nor-
malized values at location (i, j); i € {1,2,...,1} and
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Fig. 3. Filters for calculating the gradient maps.
Jj € {1,2,...,J} represent the spatial indices; uy; and oy

represent the mean and standard variance values of local
region; C is a constant. u, and oy can be computed as:

M H
Hs = Z Z O, S +m, j +h) (2)
m=—M h=—H
M H
o= | > > wunlSG+mj+h) -l 3

m=—M h=—H

where {0y pylm = —-M,...,M;h = —H, ..., H} defines a
unit-volume Gaussian window; M and H are set to 3.

As shown in [39], the transformed luminance S’(i, j) fol-
lows the generalized Gaussian distribution (GGD) for natural
images, while it is inconsistent for SCIs [16]. Thus, after local
normalization, we directly employ absolute value of the trans-
formed luminance S’(i, j) to represent the global luminance
information in the form of histogram. Here, the number of the
histogram bins is set to 10 and we can obtain 10 elements
{f1, f2---, fio} to represent statistical luminance features.
The histogram is calculated as below:

1 I J
7 2.2, 908G Dl ew) @)

fn =
i=1 j=1
1, aeb
Qa,b) =1~ 5
(@,b) [O, otherwise %)

where n is the bin index of the histogram in the range of
[1, 10]; Q(n) denotes the interval of each bin; I and J are the
image height and width, respectively.

We have provided some luminance map samples in Fig. 4.
As shown in Fig. 4, the changes of luminance maps of
distorted SCIs degraded by different distortion types are dif-
ferent from each other compared with the luminance map
of the original SCI. For Gaussian noise (GN) distortion,
many white points appear in the associated luminance map
randomly due to random distribution of GN. For Gaussian
blur (GB) distorted SCIs, the edge information is preserved
and the detailed structure information is destroyed, which can
be clearly reflected by the luminance map and the high peak
appearing in the corresponding distribution. Different from
GB distorted SClIs, part of detailed structure information is
preserved in motion blur (MB) distorted SCI. For contrast
change (CC) distorted SCIs, the variation in the luminance
map is smaller than those with other distortion types. And
the corresponding luminance distribution of CC distorted SCI
is similar to that of the original SCI. The reason might be
that the distortion of contrast change always occurs in global
scope and the local normalization is not sensitive to this type
of distortion relatively. Meanwhile, the block artifacts are
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Fig. 4. The visual samples of feature maps. The first and fourth row show SCIs; the second and fifth rows show the corresponding luminance maps; the third
and sixth rows show the corresponding luminance histograms. (A1) is the reference SCI. (A2), (A3), (A4), (D1), (D2), (D3), and (D4) represent distorted
SCIs by GN, GB, MB, CC, JPEG, JPEG2000, and Layer Segmentation Based Coding.

clear in the luminance maps of SCIs distorted by compression
distortion. Thus, luminance features are effective in capturing
the quality variation of distorted SCIs with different distortion
types.

Considering that the visual content of visual scenes could
be well represented by orientation information [32], [33], and
local orientation information in visual scenes is important
to visual perception [34], we also extract the luminance
information by using the histogram features of pairwise

products of neighboring MSCN coefficients along differ-
ent directions: horizontal (Mp), main-diagonal (Mp1), ver-
tical (My), and secondary-diagonal (Mp>), as illustrated
in Fig. 2. The pairwise products are calculated as follows:

My (i, j) = S, j)'SG, j + 1) (6)
Mpi@, j) = S, j))'SG+1,j+1) (7)
My (i, j) = S, ))'SG + 1, j) (8)
Mpa(i, j) = SG, j)'SG+1,j—1) 9)



1604

(BI11) (B21)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

(B31)

(E1) (E2)

o 1 2 3 4 5 8 7 8 9
mmmmmmmmmmm Histogram festures.

(C4)

(E4)

045

o
"1 I . I l l
0 L 1 ] | |

CE I R S R

Histogram foatues,

o1e
o
4 HEm [ |
o R
!

Histogram featres.

(F1)

£

B | II Il ll |
MM
o 0 1 2 3 4 5 [] 7 E] 9 o [ 1 2 3 0’ 5 ] 7 B B

Histogram festures

Frecusncy

Hitogram featres.

Fig. 5. The visual samples of feature maps. The first and second rows show the corresponding gradient maps and distributions of (A1-A4) illustrated in Fig. 4,
the third and fourth rows show the the corresponding gradient maps and distributions of (D1-D4) illustrated in Fig. 4.

The similar operations as described in Egs. (4) and (5)
are conducted based on My, Mpi, My and Mp», for i €
{1,2,...,1 —1}and j € {1, ..., J — 1}. Thus, we can obtain
other 40 luminance features in the form of histogram. In total,
there are 50 quality-aware features for luminance feature
representation extracted for each distorted SCI with one scale.

Existing studies show that derivative information at different
orders is highly correlated with different texture features of
natural scenes [35]-[37]. The first-order derivative information
is generally related to the slope and elasticity of a surface
which characterize the geometric properties partially, while
the second order derivatives can be used to capture the
curvature related geometric properties [37]. As we know,
there are many words in textual regions of SCIs, where the
distortion can be well captured by texture information as well
as other high-frequency pictorial regions. The second order
derivatives can effectively capture the variation of the tiny
structure which has influence on visual distortion of SClIs.
Here, we first calculate gradient maps denoted by first-order
derivative information based on four filters with different

directions, as defined in Fig. 3. The gradient maps are cal-
culated based on the luminance map as follows:

Gi=a)S. (10)
Gr =0, (11)
Gy =g3(X)S. (12)
Gi=2QS, (13)

where S’ denotes luminance map of the corresponding SCI;
g1, &2, g3 and g4 are the filters with four different directions
as defined in Fig. 3; Gi, G2, G3 and G4 are the corre-
sponding gradient maps extracted by convolution operation (X).
We provide some gradient map samples in Fig. 5. The GB
distortion will affect the visual quality of SCI by which
the non-connected regions in the SCI may connect and the
high-frequency region may become smooth. The orientation
information of texture regions in distorted SCI might be also
influenced, thus we adopt four filters with different directions
to capture the distortion.
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In order to extract the second-order derivative information,
we employ the rotation invariant uniform LBP [38] based on
these four gradient maps. The texture features are extracted
from the second-order derivative information in the form of
histogram. The ordinary LBP formula can be expressed as
follows:

E—1
LBPgL = Y 0 —1)2, (14)
i=0
I, (i—=1)>0
0(1; — l) =
0, (I —1,) <0

15)

where E and L represent the number of neighbors and
the radius of the neighborhood; (o, I, ..., I(g—1)) denote
pixel values of E circularly symmetric neighboring pixels;
I, represents intensity of the center pixel in the local region.
Based on the study [38], the local rotation invariant uniform
LBP operator can be defined as follows:

E—1
> 60U — L), y(LBPgL) <2
i=0

RLBP, = (16)
E+1, Otherwise
w(LBPg 1) = 10U-1) — 1) — 0o — 1)l
E—1
+ D10 — 1) =0y — 1) (17)
i=0

where v is used to calculate the number of bitwise transitions.
The rotation invariant uniform LBP would have E + 2 distinct
patterns and each pattern can be mapped to one bin of a
histogram. In our implementation, E is set to 8, and thus there
would be 10 bins for each LBP histogram. We calculate texture
features by the second-order derivative information based on
four gradient maps with the same operation. Totally, there are
40 quality-aware features for texture information extracted for
each distorted SCI with one scale. The histograms of texture
information are shown in Fig. 5, where we can observe that
the histograms of texture information are different for different
distortion types.

B. Regression Model for Quality Prediction

Given a distorted SCI, we can obtain 90 features with the
above operations for each scale, including 50 features for
luminance information and the others for texture information.
For a better feature representation, we resize images by down-
sampling with factors of 2 and 4. Thus, we can obtain three
images with three different scales (original image, Image2 by
downsampling with factor 2, and Image3 by downsampling
with factor 4), we find that there is no improvement in
predicting the visual quality of SCIs when the number of
scales is more than 3. There are 270 features for each distorted
SCI in total. SVR with radial basis function (RBF) kernel is
employed as the mapping function from the quality-aware fea-
tures to subjective ratings [39], [50] by utilizing the LIBSVM
package [51]. In the implementation, we divide the database
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into training and testing subsets randomly for 1000 times, with
80% as the training dataset and the rest as the testing dataset
associated with 4 reference SCIs, and the median performance
is reported.

III. EXPERIMENTAL RESULTS
A. Screen Content Image Database

To test the effectiveness of the proposed NRLT, we conduct
comparison experiments on SCI database SIQAD [15], [16].
There are 1000 SCIs contained in this database in total,
including 20 reference SCIs with diverse visual content and
980 distorted versions degraded by seven distortion types
(GN, GB, MB, CC, JPEG2000, Layer Segmentation Based
Coding (LSC), and JPEG), with seven degradation levels for
each distortion type. Although the visual content of images
in this database is diverse, there is no SCI for graphics.
The textual content mainly includes English content. Since
the subjective test for this database was conducted by using
computer, image resolutions are adjusted with a certain size
for displaying on computer. DMOS values are provided as
subjective scores in this database.

B. Evaluation Methodology

Here, three commonly used approaches are adopted to
calculate the correlation between objective scores (output by
an algorithm) and subjective scores (user ratings for SCIs):
Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank-order Correlation Coefficient (SRCC), and Root Mean
Squared Error (RMSE). PLCC can be used to estimate the
prediction accuracy, while SRCC can be adopted to evaluate
the prediction monotonicity. RMSE is a measure of deviation
between the subjective and objective quality scores. In gen-
eral, a better perceptual quality prediction metric has higher
PLCC and SRCC values, and lower RMSE value. Given the
n-th image in the database (with N images totally), its subjec-
tive and objective quality scores are s, and o,. PLCC can be
calculated as follows.

2112/:1(»1 _S‘\)(On _/0\)
\/Zrllv:l(si —9)* > (01 — )

where § and 0 denote the mean values of s, and o, respec-

PLCC =

; (18)

tively.
We can estimate SRCC as follows.
6> N 42
SRCC =1 —@, (19)
N(N2 —1)

where d, is the difference between the n-th image’s ranks in
subjective and objective results.
RMSE can be calculated as follows.

25:1(@1 - Sn)z
N

RMSE = (20)

The estimated quality scores by different IQA metrics might
have different ranges, we use a five-parameter mapping func-
tion to nonlinearly regress the quality scores into a common
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TABLE I
EXPERIMENTAL RESULTS OF NRLT AND OTHER EXISTING FR METHODS ON SIQAD DATABASE

[ Components | PSNR | SSIM_| GMSD | MAD | IFC | SPQA | SQI | GSS | EMSQA | NRLT |

[ _PLCC__ | 05869 | 05912 | 0.7259 | 0.6191 | 0.6395 | 0.8584 | 0.8644 | 0.8461 | 0.3643 | 0.8442 |

[ SRCC__ | 05608 | 0.5836 | 0.7305 | 0.6067 | 0.6011 | 0.8416 | 0.8548 | 0.8359 | 0.8504 | 0.8202 |

[ RMSE | 11.5859 | 11.5450 | 9.4684 | 11.2409 | 10.0920 | 7.3421 | 7.1782 | 7.6310 | 7.1860 | 7.5957 |
TABLE II

EXPERIMENTAL RESULTS OF NRLT AND OTHER EXISTING RR AND NR METHODS ON SIQAD DATABASE

[ Components | NIQE | ILNIQE | BRISQUE | GMLOG | GWH-GLBP | RR-IQA | BLIQUP-SCI | BQMS | NRLT |
[ _PLCC [ 03749 | 03854 | 08113 | 0.7608 | 0.7903 | 08014 | 07705 | 08115 | 0.8442 |
[ SRCC [ 03568 | 03212 | 07749 | 0.7035 | 07233 | 0.1655 | 0./990 | 0.8005 | 0.8202 |
[ RMSE [ 13.152 [ 13.2085 [ 8.2565 [ 9.2530 [ 8.7480 [ 8.5620 [ 10.0200 [ 9.3042 [ 7.5957 ]
space as follows: TABLE IIT
! ! T ETHODS BY DISTORTION-BASED SEPARATION
fx)= ,31(5 - m) + Bax + Ps (21)
[ Components | BRISQUE | GMLOG [ GWH-GLBP | NRLT |
where (f1, ..., fs) are parameters to be fitted. [ PLCC | 0.6468 | 04023 | 0.6347 | 0.7469 |
[ _SRCC__| 06010 | 03691 | 06136 [ 0.7515 |
[ RMSE | 87210 | 88043 | 65934 [ 7.2507 |

C. Comparison Experiments

Here, we compare the proposed NRLT with the following
state-of-the-art  perceptual quality estimation methods:
PSNR, SSIM [6], GMSD [12], MAD [41], IFC [40],
SPQA [16], SQI [19], NIQE [17], ILNIQE [46],
BRISQUE [39], GMLOG [50], GWH-GLBP [52], GSS [53],
EMSQA [54], RR-IQA [22], BLIQUP-SCI [25] and
BQMS [23]. Among these metrics, PSNR, IFC, MAD,
GMSD, SPQA, SQI, GSS and EMSQA are FR VQA metrics.
Specifically, SPQA, SQI, GSS and EMSQA are designed
for VQA of SCIs. RR-IQA is a RR VQA method and it
is designed for quality prediction of SCIs. NIQE, ILNIQE,
BRISQUE, GMLOG, GWH-GLBP, BLIQUP-SCI and BQMS
are NR VQA metrics, among which BLIQUP-SCI and BQMS
are built specifically for blind quality prediction of SCIs. The
performance of VQA metrics is evaluated by three different
criteria: PLCC, SRCC and RMSE.

For FR methods, the results of SPQA, SQI, GSS and
EMSQA are taken from the originally published papers. For
other FR methods, we use the source code from their public
websites to conduct the experiment. For RR and NR methods,
the results of RR-IQA, BLIQUP-SCI and BQMS are taken
from the originally published papers, and for NIQE and
ILNIQE, the pre-trained models are used to calculate the visual
quality scores of distorted SCIs directly. For other NR methods
and the proposed NRLT, we randomly utilize 80% images in
the database for training to learn a mapping function, which is
subsequently used to calculate the perceptual quality scores of
the rest distorted SCIs. There are 20 reference SCIs and each
reference SCI is associated with 49 distorted versions. Thus,
there are 784 distorted SCIs in training set associated with
16 reference SCIs, and the rest samples are used for testing.
We repeat this operation with 1000 times, and the media
performance is reported. The experimental results are shown
in Tables I and II. From Table I, we can observe that GMSD
can obatin higher accuracy in estimating the perceptual quality

of SCIs than other methods designed for quality prediction of
natural images, including SSIM, IFC and MAD. Among all the
compared metrics, NRLT can obtain competitive performance
on perceptual quality evaluation of SCIs compared with FR
methods designed for VQA of SClIs such as SPQA, SQI, GSS
and EMSQA, and it can get better performance compared with
these metrics designed for VQA of natural images.

From Table II, we can observe that NIQE and ILNIQE get
worse performance on visual quality estimation of SCIs than
BRISQUE, RR-IQA, BQMS and NRLT. GMLOG and GWH-
GLBP designed based on gradient information can obtain
high performance in quality evaluation of SCIs and even
better than some FR metrics, which demonstrates that gradient
information can capture the distortion of SCIs well. Among
the compared methods, NRLT can obtain the best performance
of visual quality estimation of SCIs, as demonstrated by the
highest PLCC and SRCC values, and the lowest RMSE value
of NRLT in Table I.

To demonstrate the robustness of the proposed NRLT,
we conduct one more experiment by using distortion-based
separation. There are 7 distortion types in this database.
We use the images with 6 distortion types as the training set
and the rest are used as testing set. The median performance
is shown in Table III. From this Table, we can observe that
the proposed NRLT can also obtain the consistent results with
subjective ratings in estimating the visual quality of SCIs. And
it can obtain better performance than other existing related
metrics.

D. Performance Analysis

As shown in Table I, compared with the following VQA
metrics designed for natural images such as SSIM and
GMSD, the VQA metrics including SPQA and SQI designed
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specifically for VQA of SCIs can achieve better performance
in quality estimation for SCIs. The main reason is that these
VQA methods designed for SCIs consider the difference
between visual perception of pictorial and textual regions in
SCIs. There are many words contained in SCIs which tend
to attract human attention as well as other high-frequency
pictorial regions. In SPQA, different visual quality calculation
methods for pictorial and textual regions are designed under
the consideration that the HVS perception to pictorial and
textual regions are different, and an activity weighting strategy
is proposed to predict the effect of pictorial and textual regions
to the overall visual quality of SCIs. SQI is a FR VQA metric
designed for VQA of SCIs by incorporating viewing field
adaption based on the perceptual property that the extent of
the visual field used to perceive useful information is much
smaller in textual region than that in pictorial region. Also,
information content weighting is used to combine the quality
scores of pictorial and textual regions to obtain the final quality
result of SCIs. Thus, SPQA and SQI can obtain better quality
prediction performance for SCIs than these metrics designed
for natural images.

In SPQA and SQI, SCI is divided into pictorial and textual
regions for visual quality prediction. Different from these
methods, SCI is regarded as a whole when its quality is
predicted in GSS, EMSQA and NRLT. SPQA and SQI con-
sider the differences between visual properties of pictorial
and textual regions, and a simple linear combination of these
quality scores of pictorial and textual regions is used to capture
complicated interaction of visual perception for SCIs. As we
can observe in Table I, these methods which do not segment
SCI into pictorial and textual regions including GSS, EMSQA
and NRLT can also obtain good objective quality prediction
results with high correlation with human subjective rating.

As shown in Table II, NIQE and ILNIQE deliver lower
performance than other methods for the reason that the used
features meet a certain distribution of natural images and
it is inconsistent with feature distributions of SCIs. Thus,
multivariate Gaussian models learnt from natural images are
not suitable for VQA of SCIs. Meanwhile, NIQE and ILNIQE
measure the deviation of the statistics of distorted image
patches from the statistics of reference image patches pre-
learned from high-quality images. On the contrary, we extract
quality-aware features based on the characteristics of the HVS.
The normalization operation is used to mimic the nonlin-
ear masking process in early human vision and eliminate
the redundant information of visual scenes. The luminance
information is extracted in the form of histogram based on
the normalized intensity map. Furthermore, we calculate the
gradient maps with different directions as the first order
derivatives, and LBP is used to compute the second order
derivatives. The statistical texture features are obtained in the
form of histogram based on the second order derivatives. With
the statistical luminance and texture features, the proposed
method can obtain the best quality prediction performance
for SCIs among the compared NR methods, as shown by
experimental results in Table II.

Although RR-IQA [22] uses the reference information to
construct the quality prediction model, it employs the average
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Fig. 6. The scatter plots of predicted quality scores by different methods
against the DMOS values (192) on the SIQAD. The horizontal axis in
each figure denotes predicted quality scores and the vertical axis in each
figure represents the DMOS values. First row: BRISQUE and GMLOG;
Second row: GWH-GLBP and NRLT.

pooling scheme to fuse the similarity of each corresponding
bins of histograms, which leads to relatively poor performance
of visual quality prediction of SCIs. BLIQUP-SCI [25] belongs
to opinion-unaware quality prediction method, since it does
not need the subjective quality scores in the training phase.
However, it uses four FR methods designed for natural images
to generate the labels, and obtains the final quality score of
SCI by a linear summation of local and global quality scores.
It cannot obtain promising quality prediction performance
of SCIs, since the used four FR methods cannot get good
performance for quality prediction of SCIs [16]. BQMS uses
1000 training samples to fit the linear regression model before
NSS feature extraction. Different from BQMS, we utilize
histograms to represent the luminance and texture features in
the proposed method. Experimental results shown in Table II
demonstrate the effectiveness of the proposed NRLT.
Meanwhile, we also provide the scatter plots describing the
distributions of objective quality scores against DMOS values
from different NR methods including BRISQUE, GMLOG,
GWH-GLBP and the proposed NRLT in Fig. 6. From this
figure, we can observe that the points from NRLT are more
centralized than these from other existing methods, which
demonstrates that the predicted visual quality scores by NRLT
are more consistent with subjective ratings. These results are
consistent with the experimental results in Table II.

E. Feature Validation

The quality-aware features extracted in this study mainly
include two parts: the first part is luminance features and
the second part is texture features. As shown in Fig. 4,
the luminance maps are altered due to the existing distortion,
and different distortion types lead to the distinct changes of
luminance distributions. For GN distortion, many white points
appear in the associated luminance map randomly. For CC
distorted SCI, the variation in luminance map is smaller than
these with other distortion types, and its corresponding lumi-
nance distribution is similar to that of the original SCI. The
reason is that the distortion of contrast change always occurs
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TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT FEATURES

[ Components | Luminance | Texture | NRLT |
[ _PLCC_ [ 08333 [ 0.7731 | 0.8442 |
[ SROCC | 07936 [ 0.7245 | 0.8202 |
[ RMSE | 78341 | 890273 | 7.5957 |
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Fig. 7. The comparison results with different sizes of Gaussian window in
terms of PLCC and SRCC.

in global scope and the local normalization is not sensitive
to this type of distortion. For GB distorted SCI, the edge
information is preserved and the detailed structure information
is destroyed, which can be clearly reflected by the luminance
map. And high peak appears in the corresponding distribution
of GB distorted SCI, as shown in Fig. 4. On the contrast,
part of detailed structure information can be preserved in MB
distorted SCI. For GB and MB distorted SCIs, luminance
features are more effective than texture features, since the
distortions of luminance features are more distinguishable.
Although the variations can be reflected by luminance distrib-
utions of JPEG, JPEG2000 and LSC distorted SCIs compared
with the distribution of original SCI, the differences among
distributions of JPEG, JPEG2000 and LSC distorted SCIs
are slightly small, as shown in Fig. 4. In these three cases,
texture features are more effective than luminance features in
measuring visual distortion of SCIs, since the distributions
of texture features are more distinguishable than those of
luminance features, as shown in Fig. 5.

In this section, we conduct the comparison experiment to
demonstrate the effect of the selected features on SIQAD.
We divide the quality-aware features into two groups: lumi-
nance features and texture features. Only the luminance fea-
tures or texture features are used to train the proposed model
by SVR. The experimental results are shown in Table IV.
In this table, the first column lists the evaluation index, while
the second and third columns list the experimental results by
only luminance features or texture features. From this table,
we can observe that the proposed method with statistical
luminance features can obtain better performance than that
with statistical texture features. Overall, the proposed method
with both statistical luminance and texture features can obtain
better performance than that with only one type of features
(statistical luminance features or statistical texture features).
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Fig. 8. The comparison results with different number of histogram bins in
terms of PLCC and SRCC.

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT SCALES

[ Number | 1 [ 2 1 3 1T 4 71T 5 7]
[ PLCC [ 08051 | 0.8227 | 0.8442 | 0.8363 | 0.8116 |
[SROCC [ 0.7713 [ 0.7937 | 0.8202 | 0.8078 [ 0.7768 |
[ RMSE [ 83584 | 70978 | 7.5957 | 7.2228 | 8.2369 |

FE. Parameter Setting

In this experiment, we explore the effect of the parameter
setting of feature extraction. One parameter considered in
this work is the size of Gaussian window used to calculate
the luminance map, which is the basis of feature extraction.
Inspired by [18] and [19], the extent of the visual field used
to extract useful information in pictorial region is much larger
than that in textual region. The sizes of the Gaussian window
are set to 3*3, 5*%5, 7*7 and 9*%9 in the experiment for
comparison. The experimental results are shown in Fig. 7.
As we can observe, the performance by the window size
7*7 is superior to those from other cases. Thus, we set the
size of Gaussian window to 7*7. During feature extraction,
we employ histogram to represent statistical luminance fea-
tures. In general, the feature histogram with a large number
of bins is unstable, while the feature histogram with a small
number of bins cannot represent the characteristics of fea-
ture distributions well. We have conducted one comparison
experiment by using different number of bins to evaluate the
performance of feature histograms, where the bin is set to 5,
10, 15 and 20. The experimental results are shown in Fig. 8.
From this figure, we can see that the proposed method can
obtain robust quality prediction performance with different
histogram bins. We set the number of histogram bins to 10 for
the optimal performance. For feature representation, we have
extracted the quality-aware features with different number
of scales. The experimental results are shown in Table V.
We set the number of histogram bins to 10 for the optimal
performance. For feature representation, we have extracted
the quality-aware features with different number of scales.
The experimental results are shown in Table V. From this
table, we can see that there is no improvement in visual
quality prediction of SCIs when the number of scales is
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more than three. Thus, we set the number of scales to
three.

IV. CONCLUSION

In this study, we have proposed a no reference quality
assessment method for SCIs inspired by perceptual properties
that the HVS is sensitive to luminance and texture information.
The proposed NRLT metric includes two steps. In the first step,
a luminance map is computed through local normalization
and the histogram of the luminance map is used to represent
the statistical luminance features of SCIs in the global scope.
Furthermore, four filters with different orientations are used to
calculate gradient maps of the luminance map, by which we
extract LBP histogram features as statistical texture features
for SCIs in the global scope. In the second step, SVR is
adopted to train the quality prediction model from quality-
aware features to visual quality of SCI. Experimental results
demonstrate that the proposed NRLT can obtain superior per-
formance against state-of-the-art approaches, even including
some FR VQA metrics.
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