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A B S T R A C T

Feature selection aims to remove the irrelevant and redundant features to reduce the dimensionality of data
and increase the efficiency of learning algorithms. Specifically, unsupervised feature selection without any label
information has become a challenging and significant task in machine learning applications. In this paper, a
novel algorithm called Ordinal Preserving Matrix Factorization (OPMF), which incorporates matrix factorization,
ordinal locality structure preserving and inner-product regularization into a unified framework, is proposed
for feature selection. The advantages of our algorithm are three-fold. First, the ordinal locality property of
original data is preserved by introducing a triplet-based loss function to the selected features, which is of
great importance for distance-based classification and clustering tasks. Second, an inner product regularization
term is incorporated into the proposed framework, so that the selected features obtained by our OPMF can be
sparse and low redundant. Third, a simple and efficient iteratively updating algorithm is derived to solve the
objective function of the proposed algorithm. Extensive experimental results on six datasets demonstrate that
the proposed OPMF can obtain competitive performance compared to the existing state-of-the-art unsupervised
feature selection approaches.

1. Introduction

With the rapid growth of the storage technologies, the amount of
available data explodes in sample number and input space dimen-
sion [1–3]. However, the high-dimensional data always contain some
irrelevant and redundant features, which leads to high computational
and space complexity for data processing. Moreover, the irrelevant and
redundant features also adversely affect the clustering or classification
performance. Hence, as one of typical methods to reduce dimensionality
of the data and address aforementioned issues, feature selection has
attracted more and more attention in the research community [1–3].

In general, feature selection methods can be categorized into su-
pervised and unsupervised ones in terms of the availability of class
label information [4–7]. Supervised feature selection methods search
the most discriminative feature subset with the guidance of class label
information and have achieved good performance in classification and
recognition tasks [8–11]. However, they are not feasible for some real-
world applications in which the labels of training data are unavailable.
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Compared with supervised feature selection, unsupervised feature se-
lection methods determine the subset of selected features by investi-
gating only the intrinsic property or structure of the high-dimensional
data [12–14], which makes them more flexible and practical. Therefore,
it is much desired to design effective unsupervised feature selection
methods for machine learning applications.

Recently, there have been many unsupervised feature selection
approaches proposed in the literature [5]. Among them, Variance
Score (VS) is a classical and simple unsupervised feature selection
algorithm [15]. VS first calculates the variance of each feature and then
selects the features with large variances as the optimal feature subset.
He et al. took the locality preserving ability of features into account
and proposed an unsupervised feature selection approach named as
Laplacian Score (LS) [16]. Through LS algorithm, the feature subset that
can best maintain the manifold structure of original high-dimensional
data can be selected. Zhao et al. incorporated the spectral graph
theory into feature selection and proposed a Spectral-Feature Selection
(SPEC) approach [17]. SPEC first constructs a similarity graph based
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(a) Extended YaleB.

(b) CMU PIE.

(c) AR.

(d) JAFFE.

(e) ORL.

(f) COIL20.

Fig. 1. Some images from the different databases.

on high-dimensional data and then selects the feature subset which
can preserve the structure information of the graph by spectral graph
theory. However, the aforementioned algorithms estimate the quality
of the features in one-by-one manner and the possible correlations
among features are neglected, which may lead the selected feature
subset to be sub-optimal [18,19]. To overcome this shortage, several
sparsity regularization based approaches have been proposed and shown
better performances [18–23]. Cai et al. took the underlying manifold
structure and 𝑙1-norm regularization into a unified framework to obtain
the optimal feature subset [18]. In [19], an Unsupervised Discriminative
Feature Selection (UDFS) algorithm which takes the discriminative
information and the correlation between features into consideration was
proposed by Yang et al. Moreover, a Nonnegative Discriminative Feature
Selection (NDFS) algorithm was also proposed to select the feature
subset with nonnegative spectral analysis [20]. In order to handle the
outliers or noise in data, a series of unsupervised feature selection
approaches based on 𝑙2,1-norm have been proposed recently [21–27].
In [21], Nie et al. introduced 𝑙2,1-norm into both the loss function
and the feature selection matrix to reduce the effect of outliers and
noise. Robust Unsupervised Feature Selection (RUFS) integrated 𝑙2,1-
regularized regression with 𝑙2,1-norm-based nonnegative matrix fac-
torization into a unified framework to select the most discriminative
features while capturing the manifold structure of data [22]. Zhu
et al. presented a Regularized Self-representation (RSR) approach for
unsupervised feature selection [23]. In RSR, a linear regression model
was firstly established so that each feature can be represented as a

linear combination of its relevant features. Then, the most represen-
tative features were selected by introducing 𝑙2,1-norm into the linear
regression model. For the sake of taking the structure preserving ability
of features into account, Yi et al. [24] proposed a Graph Regularized
Nonnegative Self-Representation (GRNSR) algorithm which combined
the local structure and non-negative 𝑙2,1-norm sparse regularization for
unsupervised feature selection. After that, Zhou et al. integrated the
local and global structures, 𝑙2,1-norm sparse regularization, and the non-
negativity constraint into a unified framework and proposed Structure-
preserving Nonnegative Feature Self-Representation (SPNFSR) for fea-
ture selection [25]. Similarly, Tang et al. [28] employed both 𝑙2,1-norm
and 𝑙1-norm to regularize the feature self-representation and graph
Laplacian regularizations respectively, which makes their feature selec-
tion model more robust. Different from the most existing methods that
generated the local similarity graph by kernel functions, Zhu et al. [29]
proposed a Subspace Clustering Guided Unsupervised Feature Selection
(SCUFS) by learning a global similarity matrix to capture the multi-
subspace structure of data. To better represent the local geometrical
structure of data and make the selected features insensitive to the
influence caused by parameters, a feature selection algorithm termed
as Dual Self-representation and Manifold Regularization (DSRMR) was
proposed by Tang et al. [30]. In DSRMR, the similarity graph of data
samples is learned by a sample self-representation strategy so that the
local geometrical structure of data can be adaptively captured and well
preserved. Recently, Shang et al. [31] proposed a Non-negative Spectral
Learning and Sparse Regression-based Dual-graph Regularized (NSSRD)
approach for feature selection. Since NSSRD leveraged the geometry

119



Y. Yi et al. Signal Processing: Image Communication 67 (2018) 118–131

(a) Extended YaleB.

(b) CMU PIE.

(c) AR.

Fig. 2. The classification rates of different algorithms on three databases.

information in both data space and feature space to guide feature

selection, it can select the feature subset with accurate discrimination

information.

(a) Extended YaleB.

(b) CMU PIE.

(c) AR.

Fig. 3. The classification rate (%) of the proposed OPMF under various values
of parameters 𝛼 and 𝛽 on three databases.

Nowadays, matrix factorization has attracted a lot of attention
for dimensionality reduction problem and many related approaches
have been proposed [32–34]. However, the main problem in these
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methods is that the low dimensional features obtained by them may lack
interpretability. To address this shortcoming, Wang et al. [35] proposed
a method called Matrix Factorization based Feature Selection (MFFS),
which is developed from the viewpoint of subspace learning. MFFS
treats feature selection as a matrix factorization problem and the optimal
feature subset can be formed by introducing an orthogonal constraint
into its objective function. Although MFFS outperforms some state-
of-the-art unsupervised feature selection approaches, there still exist
several limitations in it. First, the orthogonal constraint in MFFS is too
strict to be satisfied, which may hinder its application in some practical
problems [36]. Second, the relative neighborhood proximities of origi-
nal data are not preserved in MFFS, which will weaken its performance
for the classification and clustering tasks. In addition, considering the
fact that the correlations among features are neglected in MFFS, some
redundancy features will be contained in the selected feature subset,
which also makes the feature subset far from optimal [37].

To address these problems and improve the effectiveness of matrix
factorization based feature selection, we propose a novel unsupervised
feature selection algorithm called Ordinal Preserving Matrix Factoriza-
tion (OPMF) in this paper. The proposed approach selects the features by
incorporating matrix factorization, ordinal locality structure preserving
and inner-product regularization into a unified framework. Compared
with existing unsupervised feature selection approaches, there are three
advantages in the proposed approach. First, we use the concept of
ordinal locality structure to preserve the relative neighborhood prox-
imities of original data. That is, the underlying local structures of
data will be captured during the process of feature selection, which
can improve the performance of feature selection. Moreover, an inner
product regularization term that can be regarded as a combination
of 𝑙2-norm and 𝑙1-norm on the feature weight matrix is introduced
into our algorithm to achieve the characteristics of sparsity and low
redundancy among the selected features simultaneously. At last, we
design a simple and efficient iteratively updating algorithm to solve
the objective function and provide the convergence analysis of our
algorithm. Comprehensive experiments on six datasets show that the
proposed approach is effective in terms of classification and clustering
performances.

The remainder of this paper is organized as follows. In Section 2,
we present the proposed approach in detail and provide an effective
solution for our algorithm. Then, the related experimental results and
analysis are given in Section 3. In the end, the conclusions are drawn in
Section 4.

To facilitate the presentation, some notation frequently used
throughout this paper is listed in Table 1.

2. The proposed method

In this section, we first present the proposed algorithm in detail.
Next, a simple yet efficient iterative update algorithm is provided to
solve our algorithm. Then the convergence analysis and the computa-
tional complexity of our algorithm are given. Finally, a guideline for
parameters setting in our OPMF is also provided.

2.1. OPMF model

Given a high-dimensional original data matrix 𝑋 = [𝑥1; 𝑥2;… ; 𝑥𝑛] ∈
𝑅𝑛×𝑑 , where n is the number of samples, and each sample is a d-
dimensional feature vector. In our study, we regard the distance between
the spaces spanned by the original high-dimensional data samples and
the selected features as the evaluation criterion. Based on this criterion,
a number of optimal features can be selected to approximately represent
all features. Therefore, the problem of feature selection can be solved
by the viewpoint of matrix factorization and formulized as follows:

argmin
𝑃 ,𝐴

‖𝑋 −𝑋𝑃𝐴‖2𝐹
𝑠.𝑡.𝑃 ≥ 0, 𝐴 ≥ 0, 𝑃 𝑇 𝑃 = 𝐼𝑚×𝑚,

(1)

where 𝐴 ∈ 𝑅𝑚×𝑑 denotes the coefficient matrix of the original feature
space in the selected feature space, 𝑃 ∈ 𝑅𝑑×𝑚 represents the feature
weight matrix and m indicates the number of selected features. The
constraint 𝑃 𝑇 𝑃 = 𝐼𝑚×𝑚 aims to guarantee that each element in P is
either one or zero, and any row or column of it has at most one non-
zero element. Hence, we can regard the matrix P as an indicator matrix
of the selected features.

Although Eq. (1) can accomplish the feature selection task, two
shortcomings exist in it. For one thing, the relative neighborhood
proximities of original data are neglected, which weakens the quality
of feature selection. For the other, the strict orthogonality constraint in
it is hard to be satisfied in some practical applications [36], so some
redundant and correlation features will be selected.

To address the first shortcoming of Eq. (1), we introduce the triplet-
based ordinal locality preserving loss function into our model to capture
the relative neighborhood proximities of the original data during feature
selection. The concept of ordinal locality means a kind of topology
information in each sample’s neighborhood and its important role for
graph based representation has been proved [38,39].

Given an arbitrary original sample 𝑥𝑖, and 𝑦𝑖 = 𝑃 𝑇 𝑥𝑇𝑖 is the
selected feature group, therefore 𝑌 = 𝑃 𝑇𝑋𝑇 . Let a triplet (𝑥𝑖, 𝑥𝑝, 𝑥𝑞)
denotes 𝑥𝑖 and its neighbors 𝑥𝑝 and 𝑥𝑞 . The corresponding selected
feature group is represented as (𝑦𝑖, 𝑦𝑝, 𝑦𝑞). In [38], the feature selec-
tion process can be regarded as ordinal locality preserving problem
when the following condition holds: if 𝐷𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑝) ≤ 𝐷𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑞), then
𝐷𝑖𝑠𝑡(𝑦𝑖, 𝑦𝑝) ≤ 𝐷𝑖𝑠𝑡(𝑦𝑖, 𝑦𝑞), where 𝐷𝑖𝑠𝑡(𝑥, 𝑦) is a distance metric. Based
on the aforementioned ordinal locality preserving property, the feature
groups can be determined by optimizing the following ordinal locality
preserving loss function:

max
𝑌

𝑛
∑

𝑖=1

∑

𝑝∈𝑁𝑖

∑

𝑞∈𝑁𝑖

𝑆 𝑖𝑝,𝑞[𝐷𝑖𝑠𝑡(𝑦𝑖 − 𝑦𝑝) −𝐷𝑖𝑠𝑡(𝑦𝑖 − 𝑦𝑞)], (2)

where 𝑁𝑖 is the set of k nearest neighbors of 𝑥𝑖. 𝑆𝑖 denotes an
antisymmetric matrix, where element 𝑆𝑖𝑝,𝑞 is equivalent to 𝐷𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑝) −
𝐷𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑞). Similar to [38], we denote C as a weighting matrix defined
as:

𝐶𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

∑

𝑝∈𝑁𝑖

𝑆 𝑖𝑝𝑗 , ∀𝑗 ∈ 𝑁𝑖

0, ∀𝑗 ∉ 𝑁𝑖.
(3)

Therefore, the ordinal locality preserving loss function of Eq. (2) is
equivalent to

min
𝑌

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝐶𝑖𝑗𝐷𝑖𝑠𝑡(𝑦𝑖, 𝑦𝑗 ). (4)

Since we denote the𝐷𝑖𝑠𝑡(𝑥, 𝑦) as a squared Euclidean distance metric
in this work, we can rewrite Eq. (4) as:

min
𝑌

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝐶𝑖𝑗‖𝑦𝑖 − 𝑦𝑗‖

2
2. (5)

Thus, Eq. (5) has an equivalent compact matrix form as:

min
𝑃
𝑡𝑟(𝑌 𝐿𝑌 𝑇 ) = 𝑡𝑟(𝑃 𝑇𝑋𝑇𝐿𝑋𝑃 ), (6)

where 𝐿 = 𝐷 − 𝐶+𝐶𝑇
2 is a Laplacian matrix, D is a diagonal matrix with

𝐷𝑖𝑖 =
∑𝑛
𝑗=1

𝐶𝑖𝑗+𝐶𝑗𝑖
2 .

In fact, through minimizing Eq. (5), we tend to find a matrix P that
preserves the ranking of original sample’s neighbors as much as possible
after feature selection.

The second shortcoming of Eq. (1) is the strict orthogonality con-
straint. Actually, this issue can be simply addressed through introducing
𝑙1-norm or 𝑙2,1-norm regularization with respect to P in Eq. (1). Nev-
ertheless, both sparsity and low redundancy cannot be simultaneously
achieved by this simple strategy [40]. Therefore, the optimal feature
subset is hard to be obtained. Recently, Han et al. [40] presented a
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(a) Extended YaleB. (b) CMU PIE. (c) AR.

Fig. 4. The convergence curves of the proposed approach on three different databases.

Table 1
Some notation used throughout the paper.

Notation Description Notation Description

n The number of instances 𝑃 ∈ 𝑅𝑑×𝑚 The feature weight matrix
d The number of features 𝑝𝑖 ∈ 𝑅1×𝑚 The ith row of P
m The number of selected features 𝑝𝑖𝑗 The (i, j)th entry of matrix P
𝐼𝑚×𝑚 The m-by-m identity matrix 𝐴 ∈ 𝑅𝑚×𝑑 The coefficient matrix
1𝑑×𝑑 The d-by-d all-ones matrix 𝐴𝑗𝑖 The (j, i)th entry of matrix A

novel regularization term which can be regarded as the combination of
matrix 𝑙1 and 𝑙2 norms on the weights of features. And the regularization
term is capable of characterizing the independence and saliency of
variables. Therefore, we introduce the regularization term into OPMF
to relax the strict orthogonality constraint, so that the sparsity and low
redundancy can be achieved simultaneously by our algorithm. In the
proposed algorithm, we define the regularization term as the absolute
values of inner product between feature weight vectors. That is, |⟨𝑝𝑖, 𝑝𝑗⟩|,
in which 𝑝𝑖 ∈ 𝑅1×𝑚(𝑖 = 1, 2,… , 𝑑) is the ith row vector of P. Hence, taking
all the weight vectors of P into consideration, the regularization term in
our model can be represented as:

𝛺(𝑃 ) =
𝑑
∑

𝑖=1

𝑑
∑

𝑗=1,𝑗≠𝑖
|⟨𝑝𝑖, 𝑝𝑗⟩| =

𝑑
∑

𝑖=1

𝑑
∑

𝑗=1
|⟨𝑝𝑖, 𝑝𝑗⟩| −

𝑑
∑

𝑖=1
|⟨𝑝𝑖, 𝑝𝑖⟩|

=
𝑑
∑

𝑖=1

𝑑
∑

𝑗=1
|⟨𝑝𝑖, 𝑝𝑗⟩| −

𝑑
∑

𝑖=1
‖𝑝𝑖‖

2
2.

(7)

Then, we can rewrite Eq. (6) as a more compact form as:

𝛺(𝑃 ) = (‖𝑃𝑃 𝑇 ‖1 − 𝑡𝑟(𝑃 𝑇 𝑃 )) = (‖𝑃𝑃 𝑇 ‖1 − ‖𝑃‖22). (8)

To obtain a low redundant and informative feature subset, we expect
the value of Eq. (8) to be as small as possible.

Now, through combining Eqs. (1), (6) and (8), we obtain the
objective function of our OPMF as:

min
𝑃 ,𝐴

‖𝑋 −𝑋𝑃𝐴‖2𝐹 + 𝛼𝑡𝑟(𝑃 𝑇𝑋𝑇𝐿𝑋𝑃 ) + 𝛽
𝑑
∑

𝑖=1

𝑑
∑

𝑗=1,𝑗≠𝑖
|⟨𝑝𝑖, 𝑝𝑗⟩|

= min
𝑃 ,𝐴

‖𝑋 −𝑋𝑃𝐴‖2𝐹 + 𝛼𝑡𝑟(𝑃 𝑇𝑄𝑃 ) + 𝛽(‖𝑃𝑃 𝑇 ‖1 − ‖𝑃‖22)

𝑠.𝑡. 𝑃 ≥ 0, 𝐴 ≥ 0,

(9)

where 𝑄 = 𝑋𝑇𝐿𝑋, 𝛼 and 𝛽 are two tradeoff parameters. In Eq. (9), the
first term is to measure the representation ability of selected features;
the second term is to ensure that the relative neighborhood proximities
of the original data are preserved during feature selection and the third
term is to make the feature weight matrix be sparse and low redundant.

Through optimizing Eq. (9), we can learn the feature weight matrix
P. Then, we can rank all features according to the value of ‖𝑝𝑖‖2 in
descending order and select the top m features as the optimal feature
subset.

2.2. Iterative updating algorithm

In our OPMF, there are two variables (i.e., P and A) that are required
to be optimized. Nevertheless, the objective function in Eq. (9) is
convex in P and A separately but not convex when combining them
together. Therefore, we cannot obtain a closed-form solution. To address
the problem, an efficient iterative updating algorithm is designed to
optimize our model in this subsection.

Optimize P
First, suppose that A is fixed, the optimization problem for P in

Eq. (9) can be reduced to

min
𝑃

‖𝑋 −𝑋𝑃𝐴‖2𝐹 + 𝛼𝑡𝑟(𝑃 𝑇𝑄𝑃 ) + 𝛽(‖𝑃𝑃 𝑇 ‖1 − ‖𝑃‖22)

𝑠.𝑡. 𝑃 ≥ 0.
(10)

By simple algebraic manipulations, some irrelevant terms can be
removed from Eq. (10). Then, we can rewrite Eq. (10) as:

min
𝑃
𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋𝑃𝐴) − 2𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋) + 𝛼𝑡𝑟(𝑃 𝑇𝑄𝑃 )

+ 𝛽(𝑡𝑟(1𝑑×𝑑𝑃𝑃 𝑇 ) − 𝑡𝑟(𝑃 𝑇 𝑃 ))
𝑠.𝑡. 𝑃 ≥ 0.

(11)

where 1𝑑×𝑑 is an all-ones matrix.
To solve the optimization problem in Eq. (11), we introduce the

Lagrange multiplier 𝜆 to our model and rewrite it as:

𝜑(𝑃 , 𝜆) =
{

𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋𝑃𝐴) − 2𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋) + 𝛼𝑡𝑟(𝑃 𝑇𝑄𝑃 )
+𝛽(𝑡𝑟(1𝑑×𝑑𝑃𝑃 𝑇 ) − 𝑡𝑟(𝑃 𝑇 𝑃 )) + 𝑡𝑟(𝜆𝑃 )

}

. (12)

By taking the derivative of Eq. (12) with respect to P, we get:

𝜕𝜑(𝑃 , 𝜆)
𝜕𝑃

= −2𝑋𝑇𝑋𝐴𝑇 + 2𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 2𝛼𝑄𝑃

+2𝛽(1𝑑×𝑑𝑃 − 𝑃 ) + 𝜆. (13)
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(a) JAFFE.

(b) ORL.

(c) COIL 20.

Fig. 5. The ACC (%) of different feature selection algorithms.

Using the Karush–Kuhn–Tucker (KKT) [41] condition 𝜆𝑖𝑗𝑃𝑖𝑗 = 0, we
obtain:

(−2𝑋𝑇𝑋𝐴𝑇 + 2𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 2𝛼𝑄𝑃 + 2𝛽(1𝑑×𝑑𝑃 − 𝑃 ))𝑖𝑗𝑃𝑖𝑗 = 0. (14)

(a) JAFFE.

(b) ORL.

(c) COIL 20.

Fig. 6. The NMI (%) of different feature selection algorithms.

Similar to [42], in order to guarantee the non-negativity of P, we
define 𝑄 = 𝑄+ −𝑄−, where

𝑄+
𝑖𝑗 =

(|𝑄𝑖𝑗 | +𝑄𝑖𝑗 )
2

, 𝑄−
𝑖𝑗 =

(|𝑄𝑖𝑗 | −𝑄𝑖𝑗 )
2

. (15)
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(a) JAFFE.

(b) ORL.

(c) COIL 20.

Fig. 7. The ACC (%) of the proposed OPMF vs. parameters 𝛼 and 𝛽 on three
databases.

(a) JAFFE.

(b) ORL.

(c) COIL 20.

Fig. 8. The NMI (%) of the proposed OPMF vs. parameters 𝛼 and 𝛽 on three
databases.
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By substituting the decomposed positive and negative parts of
Eq. (15) into Eq. (14), we obtain the updating rule of P as

𝑃𝑖𝑗 ← 𝑃𝑖𝑗
(𝑋𝑇𝑋𝐴𝑇 + 𝛽𝑃 + 𝛼𝑄−𝑃 )𝑖𝑗

(𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 𝛽1𝑑×𝑑𝑃 + 𝛼𝑄+𝑃 )𝑖𝑗
. (16)

Optimize A
Then, we fix P to optimize the variable A, the optimization problem

about A in Eq. (9) can be reduced to

min
𝐴

‖𝑋 −𝑋𝑃𝐴‖2𝐹
𝑠.𝑡. 𝐴 ≥ 0.

(17)

After some algebraic manipulations, Eq. (17) is equivalent to

min
𝐴

−2𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋) + 𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)

𝑠.𝑡. 𝐴 ≥ 0.
(18)

Likewise, by introducing a Lagrange multiplier 𝜗 into the constraint
𝐴 ≥ 0, we can rewrite Eq. (18) as:

𝜑(𝐴, 𝜗) = −2𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋) + 𝑡𝑟(𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋𝑃𝐴) + 𝑡𝑟(𝜗𝐴). (19)

The derivative of Eq. (19) with respect to A, we get:

𝜕𝜑(𝐴, 𝜗)
𝜕𝐴

= −2𝑃 𝑇𝑋𝑇𝑋 + 2𝑃 𝑇𝑋𝑇𝑋𝑃𝐴 + 𝜗. (20)

Using the Karush–Kuhn–Tucker (KKT) [41] condition 𝜗𝑖𝑗𝐴𝑖𝑗 = 0, we
obtain:

(−2𝑃 𝑇𝑋𝑇𝑋 + 2𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗𝐴𝑖𝑗 = 0. (21)

The updating rule of A is as follows:

𝐴𝑖𝑗 ← 𝐴𝑖𝑗
(𝑃 𝑇𝑋𝑇𝑋)𝑖𝑗

(𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗
. (22)

The whole procedure of our algorithm is summarized in Algorithm 1.

Algorithm 1. OPMF

Input: The data matrix 𝑋 ∈ 𝑅𝑛×𝑑 , balance parameters 𝛼 and 𝛽, number of
selected features m, each sample’s nearest neighborhood size k.
Output: An index set {𝑖1 , 𝑖2 ,… , 𝑖𝑚} of the selected features.

Stage one: Graph construction
1. Construct the nearest neighborhood graph;
2. Compute the weighting matrix C using Eq. (3) and Laplacian matrix L;

Stage two: Alternative optimization
1. Initialize:𝑃 ∈ 𝑅𝑑×𝑚 and 𝐴 ∈ 𝑅𝑚×𝑑 ;
2. Alternatively update P and A until convergence.

a. Fix A, update P by Eq. (16);
b. Fix P, update A by Eq. (22);

Stage three: Feature selection
1. Calculate all feature weight values based on ‖𝑝𝑖‖2 (𝑖 = 1, 2,… , 𝑑);
2. Sort them in descending order and select the top m features to form the
optimal feature subset;
3. The selected feature index set {𝑖1 , 𝑖2 ,… , 𝑖𝑚} is returned.

2.3. Convergence analysis

In this subsection, we analyze the convergence of the updating rules
in Eqs. (16) and (22).

Theorem 1. For 𝑃 ≥ 0, 𝐴 ≥ 0, the value of the objective function in
Eq. (9) is non-increasing and has a lower boundary under the updating rules
in Eqs. (16) and (22).

To prove Theorem 1, we incorporate an auxiliary function similar to
Ref. [43], which is defined as follows:

Definition 1. 𝜙(𝑣, 𝑣′) is an auxiliary function of 𝜓(𝑣) if conditions
𝜙(𝑣, 𝑣′) ≥ 𝜓(𝑣) and 𝜙(𝑣, 𝑣) = 𝜓(𝑣) are satisfied.

The auxiliary function is useful because of the following lemma:

Lemma 1. If 𝜙 is an auxiliary function of 𝜓 ; then, 𝜓 is non-increasing
under the following updating rule:

𝑣(𝑐+1) = argmin
𝑣
𝜙(𝑣, 𝑣(𝑐)) (23)

where 𝑐 indicates the 𝑐th iteration.

Proof. 𝜓(𝑣(𝑐+1)) ≤ 𝜙(𝑣(𝑐+1), 𝑣(𝑐)) ≤ 𝜙(𝑣(𝑐), 𝑣(𝑐)) = 𝜓(𝑣(𝑐)). □

First, we need to prove that the updating rule for variable P in
Eq. (16) is consistent with Eq. (23) when an auxiliary function is
properly designed. We define 𝜓𝑖𝑗 (𝑃𝑖𝑗 ) as the part of objective function
Eq. (9) that is only related to 𝑃𝑖𝑗 . Therefore, we have:

𝜓𝑖𝑗 (𝑃𝑖𝑗 ) = (𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋𝑃𝐴 − 𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋 + 𝛼𝑃 𝑇𝑄𝑃

+ 𝛽(1𝑑×𝑑𝑃𝑃 𝑇 − 𝑃 𝑇 𝑃 ))𝑖𝑗 , (24)

∇𝜓𝑖𝑗 (𝑃𝑖𝑗 ) = (−2𝑋𝑇𝑋𝐴𝑇 + 2𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 2𝛼𝑄𝑃

+2𝛽1𝑑×𝑑𝑃 − 2𝛽𝑃 )𝑖𝑗 , (25)

∇2𝜓𝑖𝑗 (𝑃𝑖𝑗 ) = 2(𝑋𝑇𝑋)𝑖𝑖(𝐴𝑇𝐴)𝑗𝑗 + 2𝑄𝑖𝑖 + 2𝛽(1𝑑×𝑑 − 𝐼)𝑖𝑖, (26)

where ∇𝜓𝑖𝑗 (𝑃𝑖𝑗 ) and ∇2𝜓𝑖𝑗 (𝑃𝑖𝑗 ) represent the first-order and second-
order derivatives of the objective function 𝜓𝑖𝑗 with respect to 𝑃𝑖𝑗 ,
respectively. I is the identity matrix.

Lemma 2. The following function in Eq. (27) is a reasonable auxiliary
function of 𝜓𝑖𝑗 (𝑃𝑖𝑗 ).

𝜙(𝑃𝑖𝑗 , 𝑃
(𝑐)
𝑖𝑗 ) = 𝜓𝑖𝑗 (𝑃

(𝑐)
𝑖𝑗 ) + ∇𝜓𝑖𝑗 (𝑃

(𝑐)
𝑖𝑗 )(𝑃𝑖𝑗 − 𝑃

(𝑐)
𝑖𝑗 )

+
(𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 𝛽1𝑑×𝑑𝑃 + 𝛼𝑄−𝑃 )𝑖𝑗

𝑃 (𝑐)
𝑖𝑗

(𝑃𝑖𝑗 − 𝑃
(𝑐)
𝑖𝑗 )2.

(27)

Proof. Through the Taylor series expansion of 𝜓𝑖𝑗 (𝑃𝑖𝑗 ), we can get:

𝜓𝑖𝑗 (𝑃𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

𝜓𝑖𝑗 (𝑃
(𝑐)
𝑖𝑗 ) + ∇𝜓𝑖𝑗 (𝑃

(𝑐)
𝑖𝑗 )(𝑃𝑖𝑗 − 𝑃

(𝑐)
𝑖𝑗 )

+ 1
2
∇2𝜓𝑖𝑗 (𝑃

(𝑐)
𝑖𝑗 )(𝑃𝑖𝑗 − 𝑃

(𝑐)
𝑖𝑗 )2

⎫

⎪

⎬

⎪

⎭

=

{

𝜓𝑖𝑗 (𝑃
(𝑐)
𝑖𝑗 ) + ∇𝜓𝑖𝑗 (𝑃

(𝑐)
𝑖𝑗 )(𝑃𝑖𝑗 − 𝑃

(𝑐)
𝑖𝑗 )

+(𝑋𝑇𝑋)𝑖𝑖(𝐴𝑇𝐴)𝑗𝑗 + 𝛼𝑄𝑖𝑖 + 𝛽(1𝑑×𝑑 − 𝐼)𝑖𝑖(𝑃𝑖𝑗 − 𝑃
(𝑐)
𝑖𝑗 )2

}

.

(28)

By comparing Eq. (27) with Eq. (28), we can find that 𝜙(𝑃𝑖𝑗 , 𝑃
(𝑐)
𝑖𝑗 ) ≥

𝜓𝑖𝑗 (𝑃𝑖𝑗 ) is equivalent to the following inequality:

(𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 𝛽1𝑑×𝑑𝑃 + 𝛼𝑄+𝑃 )𝑖𝑗
𝑃 (𝑐)
𝑖𝑗

≥ (𝑋𝑇𝑋)𝑖𝑖(𝐴𝑇𝐴)𝑗𝑗 + 𝛼𝑄𝑖𝑖 + 𝛽(1𝑑×𝑑 − 𝐼)𝑖𝑖. (29)

According to linear algebra, we can obtain:

(𝑋𝑇𝑋𝑃𝐴𝐴𝑇 )𝑖𝑗 =
𝑚
∑

𝑙=1
(𝑋𝑇𝑋𝑃 (𝑐))𝑖𝑙(𝐴𝑇𝐴)𝑙𝑗 ≥ (𝑋𝑇𝑋𝑃 (𝑐))𝑖𝑗 (𝐴𝑇𝐴)𝑗𝑗

≥
𝑑
∑

𝑙=1
(𝑋𝑇𝑋)𝑖𝑙𝑃

(𝑐)
𝑙𝑗 (𝐴𝐴𝑇 )𝑗𝑗

≥ (𝑋𝑇𝑋)𝑖𝑖𝑃
(𝑐)
𝑖𝑗 (𝐴𝐴𝑇 )𝑗𝑗 = 𝑃 (𝑐)

𝑖𝑗 (𝑋𝑇𝑋)𝑖𝑖(𝐴𝐴𝑇 )𝑗𝑗 ,

(30)

𝛼(𝑄+𝑃 )𝑖𝑗 = 𝛼
𝑑
∑

𝑙=1
(𝑄+)𝑖𝑙(𝑃 (𝑐))𝑙𝑗 ≥ 𝛼(𝑄+)𝑖𝑖(𝑃 (𝑐))𝑖𝑗

≥ 𝛼(𝑄+ −𝑄−)𝑖𝑖𝑃
(𝑐)
𝑖𝑗 = 𝛼𝑄𝑖𝑖𝑃

(𝑐)
𝑖𝑗 ,

(31)

𝛽(1𝑑×𝑑𝑃 )𝑖𝑗 = 𝛽
𝑑
∑

𝑙=1
(1𝑑×𝑑 )𝑖𝑙𝑃

(𝑐)
𝑙𝑗 ≥ 𝛽

𝑑
∑

𝑙=1
(1𝑑×𝑑 − 𝐼)𝑖𝑖𝑃

(𝑐)
𝑖𝑗

≥ 𝛽(1𝑑×𝑑 − 𝐼)𝑖𝑖𝑃
(𝑐)
𝑖𝑗 .

(32)

From Eqs. (30), (31) and (32), we observe that Eq. (29) holds and
𝜙(𝑃𝑖𝑗 , 𝑃

(𝑐)
𝑖𝑗 ) ≥ 𝜓𝑖𝑗 (𝑃𝑖𝑗 ). Besides, 𝜙(𝑃𝑖𝑗 , 𝑃𝑖𝑗 ) = 𝜓𝑖𝑗 (𝑃𝑖𝑗 ) is obvious. Therefore,

Lemma 2 is proved. □
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Next, we analyze the variable A in the same way. Here, we use
𝜓𝑖𝑗 (𝐴𝑖𝑗 ) to denote the part of Eq. (9) that is only related to 𝐴𝑖𝑗 . Then, we
get:

𝜓𝑖𝑗 (𝐴𝑖𝑗 ) = (−2𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋 + 𝐴𝑇 𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗 , (33)

∇𝜓𝑖𝑗 (𝐴𝑖𝑗 ) = (−2𝑃 𝑇𝑋𝑇𝑋 + 2𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗 , (34)

∇2𝜓𝑖𝑗 (𝐴𝑖𝑗 ) = 2(𝑃 𝑇𝑋𝑇𝑋𝑃 )𝑖𝑖, (35)

where ∇𝜓𝑖𝑗 (𝐴𝑖𝑗 ) and ∇2𝜓𝑖𝑗 (𝐴𝑖𝑗 ) represent the first-order and second-
order derivatives of 𝜓𝑖𝑗 with respect to variable 𝐴𝑖𝑗 , respectively.

Lemma 3. The following function is a reasonable auxiliary function of
𝜓𝑖𝑗 (𝐴𝑖𝑗 ).

𝜙(𝐴𝑖𝑗 , 𝐴
(𝑐)
𝑖𝑗 ) = 𝜓𝑖𝑗 (𝐴

(𝑐)
𝑖𝑗 ) + ∇𝜓𝑖𝑗 (𝐴

(𝑐)
𝑖𝑗 )(𝐴𝑖𝑗 − 𝐴

(𝑐)
𝑖𝑗 )

+
(𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗

𝐴(𝑐)
𝑖𝑗

(𝐴𝑖𝑗 − 𝐴
(𝑐)
𝑖𝑗 )

2.
(36)

Proof. Through the Taylor series expansion of 𝜓𝑖𝑗 (𝐴𝑖𝑗 ), we get:

𝜓(𝐴𝑖𝑗 ) = 𝜓𝑖𝑗 (𝐴
(𝑐)
𝑖𝑗 ) + ∇𝜓𝑖𝑗 (𝐴

(𝑐)
𝑖𝑗 )(𝐴𝑖𝑗 − 𝐴

(𝑐)
𝑖𝑗 )

+ 1
2
∇2𝜓𝑖𝑗 (𝐴

(𝑐)
𝑖𝑗 )(𝐴𝑖𝑗 − 𝐴

(𝑐)
𝑖𝑗 )

2

= 𝜓𝑖𝑗 (𝐴
(𝑐)
𝑖𝑗 ) + ∇𝜓𝑖𝑗 (𝐴

(𝑐)
𝑖𝑗 )(𝐴𝑖𝑗 − 𝐴

(𝑐)
𝑖𝑗 )

+ (𝑃 𝑇𝑋𝑇𝑋𝑃 )𝑖𝑖(𝐴𝑖𝑗 − 𝐴
(𝑐)
𝑖𝑗 )

2.

(37)

By comparing Eq. (36) with Eq. (37), it is easy to find that 𝜙(𝐴𝑖𝑗 , 𝐴
(𝑐)
𝑖𝑗 )

≥ 𝜓𝑖𝑗 (𝐴𝑖𝑗 ) is equivalent to the following inequality:

(𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗
𝐴(𝑐)
𝑖𝑗

≥ (𝑃 𝑇𝑋𝑇𝑋𝑃 )𝑖𝑖. (38)

After the linear algebra, we have:

(𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗 =
𝑚
∑

𝑙=1
(𝑃 𝑇𝑋𝑇𝑋𝑃 )𝑖𝑙𝐴

(𝑐)
𝑙𝑗 ≥ (𝑃 𝑇𝑋𝑇𝑋𝑃 )𝑖𝑖𝐴

(𝑐)
𝑖𝑗 . (39)

From Eq. (39), we know that Eq. (38) holds and 𝜙(𝐴𝑖𝑗 , 𝐴
(𝑐)
𝑖𝑗 ) ≥

𝜓𝑖𝑗 (𝐴𝑖𝑗 ). Considering that 𝜙(𝐴𝑖𝑗 , 𝐴𝑖𝑗 ) = 𝜓𝑖𝑗 (𝐴𝑖𝑗 ) is easily checked,
Lemma 3 is proved. □

At last, we will give the proof of the convergence of Theorem 1.

Proof of Theorem 1. By using the auxiliary function in Eq. (27) to
replace 𝜙(𝑣, 𝑣(𝑐)) in Eq. (23), we get:

𝑃 (𝑐+1)
𝑖𝑗 = 𝑃 (𝑐)

𝑖𝑗 − 𝑃 (𝑐)
𝑖𝑗

∇𝜓𝑖𝑗 (𝑃
(𝑐)
𝑖𝑗 )

2(𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 𝛼𝑄+𝑃 + 𝛽1𝑑×𝑑𝑃 )𝑖𝑗

= 𝑃 (𝑐)
𝑖𝑗

(𝑋𝑇𝑋𝐴𝑇 + 𝛼𝑄−𝑃 + 𝛽𝑃 )𝑖𝑗
(𝑋𝑇𝑋𝑃𝐴𝐴𝑇 + 𝛼𝑄+𝑃 + 𝛽1𝑑×𝑑𝑃 )𝑖𝑗

.

(40)

Similarly, by using the auxiliary function in Eq. (36) to replace
𝜙(𝑣, 𝑣(𝑐)) in Eq. (23), we obtain:

𝐴(𝑐+1)
𝑖𝑗 = 𝐴(𝑐)

𝑖𝑗 − 𝐴(𝑐)
𝑖𝑗

∇𝜓𝑖𝑗 (𝐴
(𝑐)
𝑖𝑗 )

2(𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗
= 𝐴(𝑐)

𝑖𝑗

(𝑃 𝑇𝑋𝑇𝑋)𝑖𝑗
(𝑃 𝑇𝑋𝑇𝑋𝑃𝐴)𝑖𝑗

. (41)

Since Eqs. (27) and (36) are the auxiliary functions of 𝜓𝑖𝑗 , 𝜓𝑖𝑗 is
non-increasing under the updating rules in Eqs. (16) and (22). In the
end, our objective function has a lower bound due to all terms in Eq. (9)
are greater than zero. Hence, the proposed algorithm is convergent via
Cauchy’s convergence rule [44].

2.4. Computational complexity analysis

In this section, we analyze the computation complexity of the
proposed algorithm. First, the computation complexity of constructing
the weighting matrix C among samples is 𝑂(𝑑2𝑛). Then, the cost of each

Table 2
The computation complexities of different algorithms.

Algorithms Computational complexity (O)

LS [16] O (𝑑𝑛2)
SPEC [17] O (𝑑𝑛2)
MCFS [18] O (𝑑𝑛2 + 𝑝𝑚3 + 𝑝𝑛𝑚2)
UDFS [19] O (𝑛2 + 𝑡𝑑3)
RUFS [22] O (t (𝑛2 + 𝑛𝑑))
MFFS [35] O (t (𝑑𝑚2 + 𝑛𝑑2 + 𝑚𝑑2))
RSR [23] O (t (𝑑3 + 𝑑𝑛2))
GRNSR [24] O (𝑛2𝑑 + 𝑑𝑛𝑘3 + 𝑡(min(𝑛, 𝑑)𝑑𝑛))
L1UFS [28] O (𝑛3 + 𝑡min(𝑛, 𝑑)3)
UFSOL [38] O (𝑡𝑑3)
SPNFSR [25] O (𝑡1𝑛𝑑2 + 𝑡1𝑛3 + 𝑡(min(n, d)dn))
SCUFS [29] O (t (𝑑𝑛3 + max(𝑛, 𝑑)𝑑2))
DSRMR [30] O (t (𝑑𝑛3 + min(𝑛, 𝑑)3))
NSSRD [31] O (𝑑𝑛2 + 𝑑2𝑛 + 𝑡𝑝𝑑𝑛)
OPMF O (𝑑2𝑛 + 𝑡(𝑑2𝑛 + 𝑑2𝑚))

iteration in Algorithm 1 is equal to 𝑂(𝑑2𝑚+𝑑2𝑛), where m is the number
of the selected features. Therefore, the total computation complexity of
our algorithm is equal to 𝑂(𝑑2𝑛 + 𝑡(𝑑2𝑚 + 𝑑2𝑛)), where t is the number
of iterations. Moreover, the computation complexities of other related
algorithms are also listed in Table 2. In this table, n is the number of
samples, d is the number of features, p represents the dimension of
the embedding space, m is the number of the selected features, k is
the number of nearest neighbors and 𝑡1 is the number of iterations for
solving the LRR problem in SPNFSR. From this table, the computational
complexity of OPMF is lower than those of L1UFS, UFSOL, SUCFS and
DSRMR.

2.5. Guideline for parameter setting

The tradeoff parameters 𝛼 and 𝛽 are used to adjust the importance of
the ordinal locality structure preserving and inner product regulariza-
tion terms in our model. Thus, their values should be set according to
the characteristic of employed database. Specifically, if the samples from
the same class are similar to each other and easily to be separated from
samples of other classes in a dataset, it is suitable to set a large value for
𝛼 so that the locality information of data can be well preserved. On the
contrary, if the neighbors of current sample belong to different classes, a
smaller 𝛼 is more appropriate. For the parameter 𝛽, it is used to control
the correlation and redundancy of the selected features obtained by our
OPMF. Therefore, its value should be set as relatively small when the
original features in a dataset contain small redundancy. Otherwise, we
should set a relative large value for it.

3. Experimental results and analysis

In this section, we conduct classification and clustering experiments
to evaluate the performance of the proposed approach.

3.1. Database

Six publicly available databases, including Extended YaleB [45],
CMU PIE [46], AR [47], JAFFE [48], ORL [49], and COIL20 [50], are
used in our experiments to compare the performance of our approach
with those of other unsupervised feature selection approaches. Detailed
descriptions of these databases are given in Table 3 and some examples
of these databases are shown in Fig. 1.

(1) Extended YaleB face database [45]: it contains 2414 frontal
cropped facial images belonging to 38 individuals, i.e., each
subject has 64 images with the size of 32 × 32 pixels.

(2) CMU PIE face dataset [46]: it contains 41,368 images of 68
human subjects. The images were captured with different poses,
illumination conditions, and expressions. We choose a subset
(C29) of this database that contains 24 images of each person
with only lighting change in our experiment.
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Table 3
Database description.

Database No. of instances No. of features No. of classes Domain

Extended YaleB 2432 1024 38 Face
CMU PIE 1632 1024 24 Face
AR 1400 1024 14 Face
JAFFE 213 1024 10 Face
ORL 400 1024 40 Face
COIL20 1440 1024 20 Object

(3) AR face database [47]: it consists of 4000 facial images from
126 individuals (70 male and 56 female faces). Each subject has
26 facial images, which were captured with several expressions
(anger, smiling, and screaming), varying illumination conditions,
and some occlusions (sun glasses and scarf). In our work, we
choose a subset that contains 14 images of each person with
several expressions and varying illumination conditions.

(4) JAFFE face database [48]: it has 213 facial images that depict
ten Japanese female models. Each image is depicted with seven
kinds of facial expressions.

(5) ORL face database [49]: it is comprised of 400 images that depict
40 distinct subjects. They were taken at different times, with
varying lighting and facial expressions as well as facial details.

(6) COIL20 database [50]: it contains 1440 images of 20 objects
viewed from varying angles at intervals of 50. Each object has
72 images with the size of 32 × 32 pixels.

3.2. Experimental settings

In our experiments, we choose some classical and state-of-the-art
unsupervised feature selection algorithms to compare and evaluate the
performance of our proposed approach, these comparison algorithms in-
clude LS [16], SPEC [17], MCFS [18], UDFS [19], RUFS [22], RSR [23],
GRNSR [24], SPNFSR [25], MFFS [35], UFSOL [38], L1UFS [28],
SCUFS [29], NSSRD [30] and DSRMR [31]. We also utilize all the
features to perform classification and clustering as Baseline algorithm.
For LS, MCFS, SPEC, UDFS, GRNSR, UFSOL, L1UFS, NSSRD and OPMF,
the number of neighborhoods is set as 5 on all the databases. The
sparsity parameters are tuned by a grid-search strategy from {10−3,
10−2, 10−1, 100, 101, 102, 103} for all compareds methods except MFFS.
According to [35], the value of parameter in MFFS is fixed to be 108.
For our approach, we tune the values of parameters 𝛼 and 𝛽 from {0,
100, 101, 102, 103, 104, 105} on all databases and report the best
results with standard deviations obtained by the optimal parameters. To
evaluate the effectiveness of selected features, we use classification rate
as the evaluation criterion for classification experiment and clustering
accuracy (ACC) and normalized mutual information (NMI) for clustering
experiment in this paper. All algorithms are implemented by Matlab
2012a and executed on a desktop computer with Inter (R) Core (TM)
i7-4970 CPU@3.60 GHz and 8 GB RAM.

3.3. Classification results and analysis

In this subsection, three databases, including Extended YaleB, CMU
PIE and AR, are used for classification experiment. For each database,
we randomly select l images as the training samples (Extended YaleB
(𝑙 = 20), CMU PIE (𝑙 = 12), and AR (𝑙 = 7)), and the remaining
images are regarded as the testing samples. In this experiment, we repeat
the process of sample selection 10 times and the average classification
results and standard deviations of different algorithms are reported in
Table 4. The nearest neighbor classifier (NNC) with Euclidean distance
is used for classification due to its simplicity. Moreover, the running
time of different algorithms are also listed in Table 4.

From Table 4, several interesting points can be observed as follows.
(1) Most of the feature selection approaches except LS perform better

than the baseline approach, which indicates feature selection plays
an important role to improve the classification performance. (2) The
performances of LS and SPEC are worse than other methods. The main
reason is that LS and SPEC select the features in a one-by-one manner
and ignore the correlations between the features. (3) GRNSR, L1UFS,
SPNFSR, SCUFS, NSSRD and DSRMR consider the local structure of
data during the procedure of feature selection, thus they achieve better
performances than MCFS, UDFS, RUFS and MMFS. (4) Since UFSOL
selects the features which can preserve the ordinal locality structure
of data, its performance is superior to most of the compared methods.
This phenomenon demonstrates that ordinal locality structure of data is
very helpful for feature selection. (5) DSRMR integrates the processes
of feature selection and similarity matrix learning into a unified frame-
work. Therefore, its performance is better than GRNSR, L1UFS, SPNFSR
and SCUFS. (6) The proposed OPMF outperforms other unsupervised
feature selection approaches on all three databases. This is due to
our algorithm incorporates the matrix factorization, ordinal locality
structure preserving and inner-product regularization into a unified
framework for feature selection. As a result, the feature subset selected
by our algorithm not only preserves the ordinal locality structure of
original data, but also contains low redundancy. (7) Since the iterative
updating strategy is utilized to optimize the proposed OPMF, its running
time is longer than some classical non-iterative approaches such as LS,
SPEC and MCFS. However, we can also find that the running time of our
algorithm is less than SCUFS and DSRMR, which is consistent with the
computational complexity analysis in Section 2.4.

The classification rates under various numbers of selected features
obtained by all feature selection approaches are shown in Fig. 2. First,
it can be seen that the classification performances of all algorithms
are improved with the increase of the number of selected features.
Nevertheless, after achieving their best performances, the recognition
rates of most algorithms begin to be stable. Second, we can find that the
performances of matrix factorization based approaches including MFFS
and our OPMF are inferior to some other methods when the number of
selected features is relatively small. The main reason may lie in that the
space spanned by only a small number of features cannot approximate
the space spanned by original input samples. Thus, the information of
high-dimensional data is not sufficiently maintained.

In order to test the influence of parameters 𝛼 and 𝛽 to the proposed
approach, the recognition results of OPMF under different parameter
values are evaluated in Fig. 3. Firstly, we can see that the proposed
OPMF performs worse when the values of 𝛼 and 𝛽 are set to zero. This
is due to the zero parameter values would lead our algorithm reduce to
traditional matrix factorization. Thus, the ordinal locality property and
redundancy of the selected features are both neglected. Secondly, it can
be found that the proposed algorithm performs better when the values
of parameters are neither too large nor too small. The reason to this
phenomenon is that a large 𝛼 will make the objective function of our
model be dominated by the second term, thus matrix factorization and
inner product regularization terms will be neglected. Similarity, a large
parameter 𝛽 will overemphasize the inner product regularization term
and meanwhile overlook the other two terms. At last, we can find that
our OPMF obtains its best performances under relatively larger 𝛼 and 𝛽
values on Extended YaleB and CMU PIE databases. The reasons may lie
in two aspects. On the one hand, Extended YaleB and CMU PIE databases
contain more samples with less variations than AR database. Thus, the
samples from the same class are more likely to be adjacent in the feature
space and a larger 𝛼 value could benefit the ordinal locality preservation
in our algorithm. On the other hand, since the uninformative and
redundant face components such as cheek and chin take up more area in
the images of Extended YaleB and CMU PIE databases than those in AR
database, a larger 𝛽 value is more preferred for our algorithm to reduce
the redundancy. Moreover, the running times of our algorithm under
various parameter values are also provided in Tables 5–7.

In the end, we give the convergence curves of the proposed approach
on three different databases, as shown in Fig. 4. From this figure, we can
learn that the proposed approach converges fast on all the databases.
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Table 4
The best average classification rates (%) ± standard deviations (%) of different algorithms on three databases. The
best results are highlighted in bold.

Methods Extended YaleB CMU PIE AR

Baseline 61.93 ± 0.81(1024) 85.63 ± 0.72(1024) 62.06 ± 1.62(1024)
LS 48.50 ± 1.42(500,0.09) 81.96 ± 1.80(500,0.14) 58.51 ± 1.55(500,0.11)
SPEC 64.18 ± 0.96(500,5.11) 87.49 ± 0.82(470,7.71) 64.56 ± 1.54(500,8.45)
MCFS 65.89 ± 1.78(200,0.31) 87.91 ± 0.84(490,0.28) 65.21 ± 1.58(500,0.23)
UDFS 65.54 ± 2.33(500,41.3) 88.66 ± 0.93(410,43.1) 66.60 ± 1.50(500,42.9)
RUFS 66.97 ± 1.32(480,30.1) 88.99 ± 0.91(490,263) 66.61 ± 1.71(480,246)
MFFS 67.22 ± 0.93(330,62.6) 88.62 ± 0.88(270,68.1) 67.41 ± 1.47(470,64.6)
RSR 68.83 ± 1.06(500,30.3) 89.37 ± 0.85(440,34.7) 66.71 ± 1.47(440,32.4)
GRNSR 70.69 ± 0.79(210,49.3) 90.62 ± 1.13(240,51.2) 67.67 ± 1.38(290,48.3)
L1UFS 70.96 ± 1.16 (500,128) 91.33 ± 1.14 (500,138) 68.59 ± 1.65 (350,131)
UFSOL 71.20 ± 1.10(270,318) 91.25 ± 1.54(450,331) 68.05 ± 1.40(320,305)
SPNFSR 71.90 ± 0.77(180,79.8) 91.84 ± 1.03(430,102) 68.95 ± 1.17(270,92.6)
SCUFS 71.47 ± 1.07(410,1309) 91.40 ± 0.97(370,1383) 68.56 ± 0.88(480,1271)
NSSRD 72.02 ± 1.19(440,5.49) 91.85 ± 0.96(410,6.18) 69.79 ± 1.52(430,5.54)
DSRMR 72.58 ± 0.97(340,594) 92.10 ± 1.14(390,975) 70.00 ± 1.94(480,710)
OPMF 73.18 ± 1.03(290,65.7) 92.27 ± 0.57(260,71.7) 70.46 ± 1.42(240,72.4)

Note that the numbers in parentheses are the number of the selected features that correspond to the best
classification result and the running time (s).

Table 5
The running time (s) of the proposed approach under different parameters 𝛼 and 𝛽 on the Extended YaleB database.

𝛼 = 0 𝛼 = 1 𝛼 = 10 𝛼 = 100 𝛼 = 1000 𝛼 = 10000 𝛼 = 100000

𝛽 = 0 68.20 87.24 87.61 87.64 91.48 95.49 102.06
𝛽 = 1 76.14 78.65 88.40 89.51 93.50 97.48 102.67
𝛽 = 10 72.69 70.20 78.60 87.75 92.49 94.48 101.60
𝛽 = 100 75.14 76.15 77.33 80.32 88.34 92.60 99.15
𝛽 = 1000 73.72 74.17 76.64 78.04 78.00 80.98 91.13
𝛽 = 10000 71.16 72.54 73.48 77.78 78.94 76.82 79.81
𝛽 = 100000 65.16 70.81 76.26 75.39 77.68 70.12 77.79

Table 6
The running time (s) of the proposed approach under different parameters 𝛼 and 𝛽 on the CMU PIE database.

𝛼 = 0 𝛼 = 1 𝛼 = 10 𝛼 = 100 𝛼 = 1000 𝛼 = 10000 𝛼 = 100000

𝛽 = 0 30.29 38.38 39.17 41.96 42.61 48.62 51.38
𝛽 = 1 38.63 40.36 45.34 45.83 46.61 47.64 51.83
𝛽 = 10 40.25 39.97 43.76 42.60 45.63 46.92 52.37
𝛽 = 100 46.26 48.84 51.91 54.03 55.74 55.96 52.60
𝛽 = 1000 43.81 46.27 50.33 55.58 50.55 45.80 55.87
𝛽 = 10000 47.24 48.58 48.26 50.78 57.20 48.94 45.09
𝛽 = 100000 45.23 50.75 49.95 50.05 55.86 60.28 47.32

Table 7
The running time (s) of the proposed approach under different parameters 𝛼 and 𝛽 on the AR database.

𝛼 = 0 𝛼 = 1 𝛼 = 10 𝛼 = 100 𝛼 = 1000 𝛼 = 10000 𝛼 = 100000

𝛽 = 0 41.18 53.88 63.34 62.79 62.86 68.62 71.80
𝛽 = 1 50.13 57.28 66.42 65.38 66.83 67.66 73.72
𝛽 = 10 49.85 56.19 64.00 66.24 67.01 67.96 72.60
𝛽 = 100 50.16 57.20 65.92 67.12 68.93 68.99 73.95
𝛽 = 1000 45.56 50.15 56.19 60.47 63.89 65.47 69.31
𝛽 = 10000 40.00 45.35 50.57 58.76 60.58 63.28 65.99
𝛽 = 100000 42.51 50.89 46.73 52.62 58.72 56.84 57.49

3.4. Clustering results and analysis

In this subsection, we carry out clustering experiment on three public
databases including JAFFE, ORL and COIL20 to verify the effectiveness
of the proposed approach. Two widely used evaluation metrics including
Accuracy (ACC) and Normalized Mutual Information (NMI) [9] are
adopted in our clustering experiment. The larger ACC and NMI are, the
better the results are.

In this work, k-means clustering algorithm is utilized to cluster
samples based on the selected features. Given that the performance of
k-means heavily depends on the initialization, we repeat this clustering
process 50 times with varying initializations and the average clustering
results together with standard deviations are reported.

In our clustering experiment, we tune the number of selected fea-
tures from 10 to 500 with the interval of 10 for all the databases.

From the clustering results in Tables 8 and 9, we can learn that all
feature selection algorithms perform better than the baseline, which
demonstrates that feature selection is necessary in clustering. Besides,
it can be found that the proposed approach outperforms other feature
selection approaches, which is consistent with the experimental results
in Section 3.3. Moreover, from the clustering results under various
numbers of selected features obtained by different approaches in Figs. 5
and 6, we can see that none of the fifteen feature selection algorithms
performs consistently better or worse than all others under all selected
feature numbers. However, the proposed OPMF outperforms most of the
feature selection approaches under most numbers of selected features
and achieves the best clustering results on all three databases, which
demonstrates the advantage of our algorithm.

Next, we discuss the sensitiveness of parameters in our proposed
approach for clustering task. The results in terms of ACC and NMI over
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Table 8
Clustering results (ACC% ± std%) of different algorithms on three databases.

Methods JAFFE ORL COIL20

Baseline 78.73 ± 2.28(1024) 75.26 ± 4.39(1024) 55.27 ± 2.71(1024)
LS 83.43 ± 6.30(100,0.05) 78.50 ± 3.10(280,0.06) 59.84 ± 2.46(420,0.23)
SPEC 85.21 ± 7.08(470,2.09) 80.30 ± 7.56(170,4.07) 61.28 ± 4.76(340,15.5)
MCFS 87.09 ± 8.71(240,0.03) 82.10 ± 5.55(240,0.65) 62.14 ± 5.12(250,0.78)
UDFS 87.42 ± 8.23(300,11.9) 83.40 ± 4.47(370,39.1) 63.25 ± 2.89(130,64.3)
RUFS 88.64 ± 7.81(470,10.3) 83.00 ± 5.42(140,53.5) 64.08 ± 4.84(360,461)
MFFS 89.58 ± 2.98(500,26.7) 83.90 ± 5.23(40,53.2) 64.60 ± 2.86(300,90.5)
RSR 87.28 ± 5.18(500,5.91) 83.10 ± 3.78(270,24.4) 64.86 ± 2.72(470,47.8)
GRNSR 89.81 ± 3.75(470,10.6) 85.80 ± 5.78(350,42.7) 65.55 ± 1.92(470,65.68)
L1UFS 89.94 ± 6.09 (420,24.4) 86.22 ± 5.89 (170,103) 66.57 ± 3.54 (220,186)
UFSOL 90.42 ± 3.46(490,76.7) 86.60 ± 3.58(430,111) 67.30 ± 2.02(490,415)
SPNFSR 90.93 ± 2.53(500,13.2) 86.90 ± 4.28(220,515) 66.79 ± 1.47(470,259)
SCUFS 91.04 ± 6.31(220,256) 87.14 ± 5.48(220,1040) 67.53 ± 2.90(360,1752)
NSSRD 91.38 ± 5.43(250,1.53) 87.30 ± 4.59(200,3.42) 67.93 ± 2.80(480,7.88)
DSRMR 91.51 ± 6.35(360,180) 87.70 ± 5.29(180,1429) 68.25 ± 2.29(490,4773)
OPMF 92.97 ± 3.47(40,24.9) 88.80 ± 2.17(170,58.1) 69.96 ± 2.76(150,87.7)

Note that the numbers in parentheses are the number of the selected features that correspond to the best clustering
result and the running time (s).

Table 9
Clustering results (NMI% ± std%) of different feature selection algorithms on different databases.

Methods JAFFE ORL COIL20

Baseline 82.13 ± 1.43(1024) 79.64 ± 3.10(1024) 70.35 ± 1.31(1024)
LS 87.56 ± 3.01(110,0.05) 81.38 ± 4.55(140,0.06) 70.68 ± 1.22(420,0.23)
SPEC 88.28 ± 6.14(390,2.09) 83.18 ± 2.28(450,4.07) 72.45 ± 1.28(370,15.5)
MCFS 88.87 ± 5.00(160,0.03) 83.83 ± 3.90(230,0.65) 72.89 ± 2.47(370,0.78)
UDFS 89.27 ± 3.57(140,11.9) 85.83 ± 2.38(370,39.1) 72.44 ± 1.67(430,64.3)
RUFS 89.14 ± 4.48(500,10.3) 85.88 ± 3.16(140,53.5) 74.86 ± 0.96(290,461)
MFFS 89.60 ± 2.64(500,26.7) 87.01 ± 2.36(50,53.2) 74.86 ± 1.36(260,90.5)
RSR 89.52 ± 2.76(500,5.91) 86.00 ± 2.98(230,24.4) 74.63 ± 1.63(470,47.8)
GRNSR 90.21 ± 2.12(490,10.6) 88.96 ± 2.36(350,42.7) 75.21 ± 1.02(480,65.8)
L1UFS 90.74 ± 4.01 (460,24.4) 89.87 ± 2.54 (140,103) 75.92 ± 2.02 (420,186)
UFSOL 90.52 ± 2.09(380,76.7) 90.47 ± 3.25(190,111) 76.60 ± 1.35(440,415)
SPNFSR 91.54 ± 1.25(480,13.2) 90.22 ± 3.04(350,51.5) 76.52 ± 0.94(440,259)
SCUFS 91.88 ± 3.24(230,256) 90.86 ± 3.29(220,1040) 76.71 ± 1.72(310,1752)
NSSRD 91.79 ± 2.92(240,1.53) 91.25 ± 2.87(260,3.42) 76.96 ± 1.30(500,7.88)
DSRMR 92.14 ± 3.71(360,180) 91.15 ± 3.00(210,1429) 77.04 ± 1.52(500,4773)
OPMF 92.80 ± 1.63(50,24.9) 91.67 ± 1.67 (290,58.1) 77.48 ± 0.99 (370,87.7)

Note that the numbers in parentheses are the number of the selected features that correspond to the best clustering
result and the running time (s).

Table 10
The running time (s) of the proposed approach under different parameters 𝛼 and 𝛽 on the JAEEF database.

𝛼 = 0 𝛼 = 1 𝛼 = 10 𝛼 = 100 𝛼 = 1000 𝛼 = 10000 𝛼 = 100000

𝛽 = 0 30.48 36.64 35.07 34.07 33.60 36.95 36.44
𝛽 = 1 32.55 35.61 35.71 33.37 33.93 36.14 36.86
𝛽 = 10 34.39 42.55 34.49 33.66 33.55 36.39 38.27
𝛽 = 100 32.67 43.64 42.48 34.69 34.34 39.10 36.43
𝛽 = 1000 30.40 41.40 43.22 42.51 36.23 35.43 36.48
𝛽 = 10000 32.48 40.38 41.84 43.18 38.52 36.19 35.45
𝛽 = 100000 31.39 39.93 42.68 42.66 42.50 38.78 35.69

Table 11
The running time (s) of the proposed approach under different parameters 𝛼 and 𝛽 on the ORL database.

𝛼 = 0 𝛼 = 1 𝛼 = 10 𝛼 = 100 𝛼 = 1000 𝛼 = 10000 𝛼 = 100000

𝛽 = 0 21.09 25.42 23.52 21.03 22.00 20.07 22.18
𝛽 = 1 20.92 21.48 21.41 20.28 19.97 19.87 23.85
𝛽 = 10 21.93 22.85 19.37 19.69 21.42 19.89 23.00
𝛽 = 100 23.91 24.50 22.77 21.18 19.40 20.13 22.99
𝛽 = 1000 20.02 21.54 27.08 24.63 23.75 21.10 23.56
𝛽 = 10000 19.49 20.18 24.81 26.75 24.39 23.17 23.84
𝛽 = 100000 21.95 22.96 19.99 25.16 26.47 24.40 21.55

three databases are shown in Figs. 7 and 8. From the two figures, we
can see that the proposed OPMF obtains its best performance under
moderate parameter values, which is consistent with the classification
experiments. Furthermore, since the view angle changes of each object
is small in COIL20, the samples of this database are more likely to be
separable and redundant. Hence, larger 𝛼 and 𝛽 values are more suitable

for our algorithm to achieve its best performance. The running times of
the proposed OPMF under different parameter values are also given in
Tables 10–12.

Finally, from Fig. 9, we can find that the proposed approach con-
verges within approximately 200 iterations in most of our clustering
experiments.

129



Y. Yi et al. Signal Processing: Image Communication 67 (2018) 118–131

Table 12
The running (s) of the proposed approach under different parameters 𝛼 and 𝛽 on the COIL20 database.

𝛼 = 0 𝛼 = 1 𝛼 = 10 𝛼 = 100 𝛼 = 1000 𝛼 = 10000 𝛼 = 100000

𝛽 = 0 101.91 121.55 124.11 115.41 120.22 118.65 115.06
𝛽 = 1 115.77 125.48 118.98 119.94 110.29 121.52 115.31
𝛽 = 10 108.54 117.73 110.32 112.23 115.37 110.38 115.48
𝛽 = 100 100.69 98.78 121.80 121.08 114.30 116.26 115.80
𝛽 = 1000 95.82 101.81 114.84 118.73 120.58 116.54 117.16
𝛽 = 10000 97.86 99.86 117.88 121.87 119.02 119.37 124.12
𝛽 = 100000 91.79 95.72 101.79 111.80 108.76 118.38 113.40

(a) JAEEF. (b) ORL. (c) COIL20.

Fig. 9. The convergence curves of the proposed approach on three different databases.

4. Conclusions

This paper has proposed an Ordinal Preserving Matrix Factorization
Feature Selection approach, which combines the matrix factorization,
ordinal locality structure preserving and inner-product regularization
into a joint framework. In our algorithm, we introduce a triplet-based
loss function to preserve the ordinal locality structure of the original
data during feature selection. Moreover, to achieve sparsity and low
redundancy among the features, an inner product regularization term
is incorporated into our algorithm. In addition, an alternating optimiza-
tion algorithm has been developed for efficient optimization. Extensive
experiments are carried out in this paper, which show that our proposed
approach outperforms several classical and state-of-the-art comparison
algorithms.
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