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Perceptual Quality Assessment of
Screen Content Images

Huan Yang, Yuming Fang, and Weisi Lin, Senior Member, IEEE

Abstract— Research on screen content images (SCIs)
becomes important as they are increasingly used in multi-device
communication applications. In this paper, we present a study on
perceptual quality assessment of distorted SCIs subjectively
and objectively. We construct a large-scale screen image quality
assessment database (SIQAD) consisting of 20 source and
980 distorted SCIs. In order to get the subjective quality scores
and investigate, which part (text or picture) contributes more
to the overall visual quality, the single stimulus methodology
with 11 point numerical scale is employed to obtain three kinds
of subjective scores corresponding to the entire, textual, and
pictorial regions, respectively. According to the analysis of
subjective data, we propose a weighting strategy to account for
the correlation among these three kinds of subjective scores.
Furthermore, we design an objective metric to measure the
visual quality of distorted SCIs by considering the visual
difference of textual and pictorial regions. The experimental
results demonstrate that the proposed SCI perceptual quality
assessment scheme, consisting of the objective metric and
the weighting strategy, can achieve better performance than
11 state-of-the-art IQA methods. To the best of our knowledge,
the SIQAD is the first large-scale database published for quality
evaluation of SCIs, and this research is the first attempt to
explore the perceptual quality assessment of distorted SCIs.

Index Terms— Screen content image, quality assessment,
subjective quality assessment, objective quality assessment.

I. INTRODUCTION

SCREEN Content Images (SCIs), which include texts,
graphics and pictures together, have been increasingly

involved in multi-client communication systems, such as
virtual screen sharing [1], information sharing between
computer and smart phones [2], cloud computing and
gaming [3], remote education, product advertising, etc.
In these systems, visual content (e.g., web pages, emails,
slide files and computer screens) is typically rendered in the
form of SCIs, and then transmitted between different digital
devices (computers, tablets or smart phones). For fast sharing
among different devices, it is important to acquire, compress,
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store or transmit SCIs efficiently. Numerous solutions have
been proposed to process SCIs, including segmentation and
compression of SCIs [4]–[9]. Lately, MPEG/VCEG called for
proposals to efficiently compress screen content image/videos
as an extension of the HEVC standard, and many proposals
have been reported to address this need [10].

When SCIs are processed, various distortions may be
involved, such as blurring, contrast change and compression
artifacts. For example, when we capture SCIs by smart
phones, blurring appears on images along with hand-shake
or out-of-focus of camera. Different settings of brightness or
contrast of screens would result in the contrast change of
captured SCIs. Compression artifacts (e.g., blocking and
quantization noises) commonly appear on encoded SCIs.
Peak Signal-to-Noise Ratio (PSNR) may be adopted in the
aforementioned proposals to evaluate the visual quality of
processed SCIs. However, it is known that PSNR is not
consistent with human visual perception [11], [12]. Quality
of Experience (QoE) has being investigated to evaluate
users’ viewing experience on webpages, which is called Web
QoE [13]. Unfortunately, the current Web QoE mainly focuses
on Quality of Service (QoS) metrics, e.g., loss ratio, rendering
and round-trip time, rather than taking differences of human
perception for pictures and texts into account [14], [15].
In these cases, the predicted QoS values would be constant
if overall loss ratio is determined. However, different loss
ratios to pictorial and textual parts may lead to quite
different QoE. Therefore, perceptual quality assessment of
SCIs is much desired for various applications. Although many
IQA methods have been proposed for quality assessment
of natural images [16], whether these IQA methods can
be applicable to SCIs is still an open question. Hence,
it is meaningful to investigate both subjective and objective
metrics for the quality evaluation of SCIs.

In this work, we aim to carry out the first in-depth study on
perceptual quality assessment of SCIs from both subjective
and objective aspects. A large-scale Screen Image Quality
Assessment Database (SIQAD) is built for the subjective
test, in which three subjective quality scores are obtained
respectively for the entire, textual and pictorial regions of
each test image. The discrete 11 scale Single Stimulus (SS)
method is adopted to carry out the subjective test. According
to the analysis of subjective data, we propose a new scheme,
SCI Perceptual Quality Assessment (SPQA), to objectively
evaluate the visual quality of distorted SCIs. The SPQA con-
sists of an objective metric and a weighting strategy. The
objective metric is designed to separately evaluate the visual
quality of textual and pictorial regions. In particular, a new
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Fig. 1. Examples of natural images, textual images and screen content images. (a) image1. (b) image2. (c) text image1. (d) text image2. (e) screen image1.
(f) screen image2.

scheme is designed to adaptively adjust the effect of luminance
and sharpness variations in SCIs to human visual perception.
The weighting strategy is designed to combine the predicted
quality scores of textual and pictorial regions to obtain
the overall quality scores of tested SCIs. Compared with
11 state-of-the-art IQA metrics, the proposed SPQA scheme
achieves much higher consistency with human visual
perception when judging the quality of distorted SCIs.

II. RELATED WORK

Natural Image Quality Assessment (NIQA) has been studied
tremendously during the last decades [16], [17]. Several
image quality assessment databases [18]–[22] have been
constructed by adopting subjective testing strategies [23].
Based upon these databases, various Full Reference (FR) IQA
methods [21], [24]–[28], such as SSIM, VIF, FSIM, MAD,
GSIM and GMSD, have been proposed to objectively assess
the quality of distorted natural images. Besides, many Reduced
Reference (RR) IQA [29] and No Reference (NR) IQA met-
rics [30] are also reported.

Document Image Quality Assessment (DIQA) has also
attracted attention in the research community recently due
to the increasing requirements of digitization of historical
or other typewritten documents [31]. Many document image
databases [32]–[35] are released, based on which various
DIQA methods have been proposed [36]–[38]. The document
images in these databases mainly consist of gray-scale or
binary texts, without pictures. Most of these document
images suffer from degradations related to the environment,
e.g., paper aging, stains, carbon copy effect and reader
annotations. Almost all the DIQA methods are designed
in no-reference manner and implemented at the character
(or string) level. The effectiveness of the DIQA methods is
finally evaluated by the Optical Character Recognition (OCR)
accuracy calculated by the OCR software rather than human
visual judgement.

The topic of Screen Image Quality Assessment (SIQA)
remains relatively un-explored. Obviously, the DIQA methods
cannot be adopted to evaluate the visual quality of SCIs
directly, since SCIs include pictorial regions besides textual
regions and do not have the aforementioned environment-
related degradations. The NIQA metrics cannot be directly
applied to evaluate the quality of distorted SCIs either, since
the statistical features of SCIs are different from those of
natural images [4], [39], especially for the textual regions.
We provide some natural, text and screen image examples
in Fig. 1. The statistical differences of natural and screen

Fig. 2. Distribution of values in the naturalness maps of the example images.

images can be measured in terms of naturalness and
activity level. The naturalness value of an image pixel I (i, j)
can be calculated as follows [40]:

N
′
(i, j) = I (i, j) − u(i, j)

σ (i, j) + 1
(1)

where i ∈ {1, 2, . . . m} and j ∈ {1, 2, . . . n} denote spatial
indices; m and n represent the image dimension; the local
mean u(i, j) and deviation σ(i, j) are computed as follows.

u(i, j) =
K∑

k=−K

L∑

l=−L

ωk,l I (i + k, j + l) (2)

σ(i, j) =
√√√√

K∑

k=−K

L∑

l=−L

ωk,l [I (i + k, j + l) − u(i, j)]2 (3)

where ω is a 2D circularly-symmetric Gaussian weighting
function with K = L = 3. We compute the distribution
of coefficients N

′
(i, j). The distributions of naturalness

values of the example images are shown in Fig. 2. It can
be observed that the coefficients of natural images follow
a Gaussian distribution. In other words, the naturalness of
a natural image is high, as demonstrated in [40], while for
textual or screen images, the distributions vary greatly. For
textual images (e.g., (c) and (d) in Fig. 1), the distribution
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Fig. 3. Some image examples with different distortion types in SIQAD (refer to the images at the original resolution for better visual comparison). (a) SCI
with Gaussian noise. (b) SCI with Gaussian blur. (c) SCI with motion blur. (d) SCI with contrast change. (e) SCI with contrast change. (f) SCI encoded by
JPEG. (g) SCI encoded by JPEG2000. (h) SCI encoded by LSC.

curve fluctuates greatly; for screen images (e.g., (e) and (f)
in Fig. 1), a sharp pimpling appears with the rest parts still
waving. We utilize the Block Activity Measure (BAM) reported
in [41] for the activity analysis. The image activity reflects
the degree of pixel variations in local image regions. It has
been demonstrated that the activity values of textual blocks
are larger than those from the pictorial blocks, which confirms
that a textual image has sharper and more intensive variation
among neighboring pixel values than a natural image.

Hence, the NIQA metrics may not be applicable to evaluate
the quality of distorted SCIs due to the statistical differ-
ences between natural and textual images. In this paper, we
firstly study the subjective quality of distorted SCIs, and then
further investigate the applicability of several state-of-the-art
NIQA methods to distorted SCIs. Finally, a specific metric
is proposed to objectively evaluate the visual quality of SCIs
based on the in-depth analysis of the subjective data for SCIs.

III. SIQAD: SCI QUALITY ASSESSMENT DATABASE

To investigate quality evaluation of SCIs, we construct a
large-scale screen image database (i.e., SIQAD) with seven
distortion types, each with seven degradation levels. Totally,
20 reference and 980 distorted SCIs are included in
the SIQAD. Subjective evaluation of these SCIs is conducted
to obtain the subjective quality scores. All the SCIs and the
corresponding subjective scores are now available [42], [43].

A. Construction of the SIQAD

In total, twenty SCIs are collected from webpages, slides,
PDF files and digital magazines through screen snapshot. The
reference SCIs are cropped from these twenty images to proper

sizes (the dimension scale is from about 600 to 900 pixels)
for natively displaying on computer screens during the
subjective test. The reference SCIs are selected with various
layout styles, including different percentages, positions and
ways of textual/pictorial region combination. The percent-
age of textual regions in the reference SCIs varies from
35% to 60%. Meanwhile, pictorial or textual regions are also
diverse in visual content. Two examples of the reference SCIs
are given in Fig. 1 (e) and (f), and some distorted SCIs with
different distortion types are given in Fig. 3.

Seven distortion types which usually appear on SCIs are
applied to generate distorted images. Gaussian Noise (GN) is
often involved in image acquisition and included in most exist-
ing image quality databases [18], [19]. Gaussian Blur (GB)
and Motion Blur (MB) are also considered due to their
commonly existing in practical applications. For example,
when SCIs are captured by digital cameras, hand-shaking,
out-of-focus or object moving would bring blur into images.
Contrast Change (CC) is also an important factor affecting
peculiarities of the HVS. Different settings of brightness and
contrast of screens will result in different visual experiences
of viewers. As compression is widely used in most SCI-based
applications, three commonly used compression algorithms are
utilized to encode the reference SCIs: JPEG, JPEG2000 and
Layer Segmentation based Coding (LSC) [7]. The JPEG and
JPEG2000 are two widely used methods in image compres-
sion, and have been introduced into many quality assessment
databases. We include LSC as another codec due to its efficient
compression of SCIs. The LSC firstly separates SCIs into
textual and pictorial blocks with a segmentation index map
in which textual blocks are marked by one and pictorial
blocks by zero. The textual layer is encoded by using the
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Basic Colors and Index Map (BCIM) method [7] while the
pictorial layer is encoded by the JPEG algorithm. Specifically,
in order to investigate the effect of misclassification to visual
quality, we artificially adjust the segmentation index map
and randomly misclassify some textual blocks to pictorial
ones with different misclassification ratios. Since the JPEG
cannot effectively encode the misclassified textual regions,
misclassification artifacts will appear on the compressed SCIs,
as illustrated in Fig. 3 (h).

For each distortion type, seven degradation levels are set
to generate images from low to high degradation levels,
which create a broad range of image impairment. The detailed
configurations of these algorithms, e.g., the standard deviation
for GB, the scale variation of CC, the quality factor
for JPEG, the misclassification ratio in LSC, are given in
related supporting files in the SIQAD [43].

B. Subjective Testing Methodology

Subjective testing methodologies of image quality evalua-
tion have been recommended by International Telecommuni-
cations Union (ITU) [23], [44], including Single Stimulus (SS),
double-stimulus and paired comparison. In this study, the
SS with an 11 point discrete scale is employed. Given one
image displaying on the screen, the human subject is asked
to give a score (from 0 to 10: 0 is the worst, and 10 is the
best) on the image quality based on her/his visual perception.
This methodology is chosen because the viewing experience
of subjects is close to that in practice, where there is no access
to the reference images [45]. The subjective test is performed
using two identical desktops with 16 GB RAM and
64-bit Windows operating system. The desktops with
calibrated 24-inch LED monitors (Dell P2412H) are placed
in the laboratory with normal indoor lighting. Viewing
conditions are in accordance with ITU Recommendation [23].
All subjects are required to sit at a viewing distance about
2−2.5 times of the screen height. The subjects are all univer-
sity under-graduate or graduate students with no experience
in image processing and quality assessment. The percentage
of female subjects is about 40%. They are all with normal or
corrected version, aging from 19 to 38 years old.

Before the start of testing stage, subjects have to go through
the training stage in which some examples with representative
distortion types and levels are presented. These examples are
not included in the testing stage. When judging SCIs, three
aspects are mainly considered: content recognizability, clarity
and viewing comfort. Content recognizability is used to check
whether the content of distorted SCIs can be recognized.
Content clarity is used to judge the impairment appearance
on the images. Viewing comfort reflects subjects’ viewing
experience. We explain these three aspects to each subject in
the training stage, and emphasize them at the beginning of the
testing stage. The graphical user interface is shown in Fig. 4.
Users give their judgment by clicking the radio buttons and
have to finish all assigned images, otherwise their judgments
will not be recorded.

In this study, we would like to not only get the overall
quality scores of all distorted SCIs, but also investigate

Fig. 4. Graphical user interface in the subjective test. The red tooltip will
change if subjects need to judge different regions.

which part (text or picture) contributes more to the overall
visual quality. Hence, subjects are required to give three
scores to each test image, corresponding to overall, textual
and pictorial regions, respectively. In this subjective test, all
the reference images are included and tested. We generate
a random permutation of 1,000 images (20 reference and
980 distorted SCIs) for each round, and make sure that
every two consecutive images are not generated from the
same reference image. We then split each permutation into
8 batches and assign one batch of 125 images to one subject
at a time. Each of these 125 images is shown three times (not
consecutively), and subjects give scores to one specific region
at each time (reminded by the red tooltip on the user interface).
After finishing the judgment of one region, subjects would take
five minutes’ break. It takes about one hour for each subject
to finish all the judgements in one batch. In the experiment,
one subject can finish the evaluation of several batches
(e.g., 2-4 batches) at different time. Totally, 96 subjects take
part in the study, and each image is evaluated by at least
30 subjects.

C. Analysis of Subjective Scores

When processing the raw subjective scores, outliers are
firstly detected and rejected according to the method [18].
Totally, six subjects are rejected, and we delete all the
subjective data reported by the rejected subjects. After outlier
rejection, we follow the data processing steps utilized in [18],
and transform the raw data to Z scores. Since we separate
all the 1000 images into 8 sessions, scale realignment is
then conducted to compensate the scale difference in different
sessions [46], [47], as done in the LIVE database [18]. A set
of 80 images (ten images were chosen from each session) is
selected, including all distortion types at different distortion
levels, and these images are re-evaluated by subjects (all
the 80 images are evaluated by each subject in one round).
A linear mapping function is also learned to convert Z scores
to Difference Mean Opinion Score (DMOS) values. Finally,
we normalize the DMOS values to a commonly used scale
(i.e., 0-100). We repeat this procedure to the three groups
of subjective scores for entire, textual and pictorial regions,
respectively.

Generally, the quality scales of the distorted SCIs in the
database should exhibit good separation of perceptual quality
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Fig. 5. Histogram of DMOS values of images in the SIQAD.

Fig. 6. Distribution of DMOS values of JPEG compressed SCIs.

and span the entire range of visual quality (from distortion
imperceptible to severely annoying) [48]. Fig. 5 shows the
histogram of the DMOS values (0:100) of all distorted images
in the database. It can be observed that the DMOS values
of images range from low to high, and have a good spread
at different levels. Besides, the diversity of images in the
constructed database can be well reflected from the distribution
of DMOS values. In Fig. 6, perceptual qualities of all distorted
images derived from JPEG compression at different levels are
displayed. We can see that, at each compression level, the
twenty distorted images derived from the twenty reference
images have different perceptual quality scores.

We examine the consistency of all subjects’ judgements
of each image. According to [23] and [45], the consistency
can be measured by the confidence interval derived from the
number and standard deviation of scores for each image. With
a probability of 95% confidence level, the difference between
the computed DMOS value and the “true” quality value is
smaller than the 95% confidence interval [23]. The mean
values of confidence intervals according to the three regions
(i.e., overall, textual and pictorial regions) are 3.00, 3.07
and 2.94, respectively. The distribution of confidence intervals
related to the overall DMOS values is shown in Fig. 7. The
confidence intervals for the textual and pictorial DMOS values
have similar distribution with that of the overall DMOS values,
and are also concentrate on small values, varying from about
0.5 to 7. In Fig. 8, two examples of DMOS distributions with
95% confidence interval are shown, which demonstrate the
reliability of the subjective scores for approximating the visual
quality of distorted images.

We also check the consistency of the subjects’ judgements
on the basis of SOS (Standard deviation of Opinion Scores)

Fig. 7. Histogram of relative confidence intervals related to the overall
DMOS values. The quality scale for all images is (0,100). Note that smaller
values indicate higher reliability.

Fig. 8. Distributions of DMOS values of two examples. The error bars
indicate the confidence intervals of related scores.

hypothesis [49], [50]. With the SOS hypothesis, the
relationship between the SOS values {s} and MOS values {x}
can be estimated by the formula s(a)2 = a(−x2 + 10x) in
the subjective rating with the discrete 11 point scales, where
a is a parameter to estimate the relationship and represents
the level of inter-subject agreement, and aε[0, 1]. In Fig. 9,
we provide the SOS hypothesis of our experimental results.
The minimum difference between {s} and the fitted {s(a)} is
obtained when a = 0.054, which indicates that the diversity of
subjects’ rating is small. The maximum diversity is achieved
when a equals to 1, which is also illustrated in this figure.

D. Analysis of Different Regions

In the subjective test, we get three subjective scores for
each test image: QE , QT and Q P , corresponding to the
quality of the entire, textual and pictorial regions, respectively.
Based upon the subjective scores, one problem we would
like to explore is which part contributes more to the overall
visual quality of SCIs, textual or pictorial part? Hence,
we analyze the overall correlation of these three quality scores
(QE , QT and Q P) in terms of Pearson Linear Correlation
Coefficient (PLCC), Root Mean Squared Error (RMSE) and
Spearman rank-order correlation coefficient (SROCC) [51].
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Fig. 9. SOS hypothesis for the subjective rating. Higher value of a indicates
larger diversity of subjects’ judgment in the subjective test.

TABLE I

CORRELATION ANALYSIS OF THE OBTAINED QUALITY SCORES FOR THE

ENTIRE IMAGES, TEXTUAL AND PICTORIAL REGIONS

As such, we can know which part attracts more attention
when viewing distorted SCIs. Through in-depth investigation
of their correlation, an effective way for integrating textual
and pictorial parts can be figured out. Meanwhile, correlations
for each distortion type are also calculated to estimate human
visual perception to different distortion types. The correlation
results are reported in Table I.

To verify the statistical difference between these three sets
of subjective scores, we perform the two-way Analysis of
Variance (ANOVA) [52] with the distortion levels and the
three sets of subjective scores (i.e., QE, QT and QP) as
factors. Based on the computation of the F-statistic (F) and the
degree of freedom (r ), the probability (p) that indicates
the probability that the null hypothesis can be rejected, where
the null hypothesis is that the mean of the compared factors
is the same. Generally, p equal to or lower than 0.05 is
considered sufficient to suggest that the observed factors are
significantly different. The results with F = 67.66, r = 2
and p < 0.001 indicate that there exists statistical difference
among the three sets of subjective scores. Besides, a significant
effect of distortion levels to the final quality is verified with
F = 187.55, r = 48 and p < 0.001. The results (F = 4.41,
r = 96 and p < 0.001) indicate that there exists interaction
effects between these two quality factors. The final visual
quality of SCIs is determined by both the distortion type and
the specific region.

From Table I, we can observe that the textual part has
higher overall correlation with the entire image than the

Fig. 10. Distributions of DMOS values of textual and pictorial regions versus
PSNR values. PSNR is used here to measure the actual intensity variation.

pictorial part. However, for different distortion types, the
results vary to some extent. For example, in the CC case,
the contrast variation of pictorial regions affect human
vision more compared to that of textual regions. The reason
is that, observers prefer to give high scores to texts of
high shape integrity and clarity, even though their colors
change significantly. For pictorial regions, severe contrast
change would result in uncomfortable viewing experiences.
Therefore, in this case, pictorial regions contribute more to the
quality of the entire image. On the contrary, in the MB case,
textual regions attract more attention. The integrity and
clarity of texts are easier to be affected by motion blurring.
For other distortions, the correlation results also vary from
case to case. These phenomenons can also be reflected from
the distributions of DMOS values of these two regions.
The distributions of textual and pictorial DMOS values are
illustrated in Fig. 10. From the upper subfigure, we can see that
subjects prefer to give high quality scores (low DMOS values)
to contrast changed textual regions, while textual regions
impaired by blurring have higher DMOS values. For pictorial
regions, the difference between different distortion types is
not so obvious. Consequently, it is challenging to have an
unified formula to account for the correlation among the
three scores. This analysis results can inspire researchers to
propose effective objective metrics for distorted SCIs.

IV. OBJECTIVE QUALITY ASSESSMENT OF SCIs

As aforementioned in Sec. II, due to the different properties
of textual and pictorial regions in SCIs, the same distortion
in different regions may lead to different visual perception
of human beings. Hence, it is natural and reasonable to
separately handle each part, and then combine them together
with differentiation. In this section, we propose a novel
scheme (SPQA) to objectively evaluate the visual quality of
distorted SCIs, considering the visual differences between
textual and pictorial regions. The diagram of the proposed
scheme is illustrated in Fig. 11. One reference SCI X and
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Fig. 11. Diagram of the proposed SPQA scheme. The SPQA mainly contains two algorithms highlighted in the figure.

Fig. 12. DMOS values of some examples in SIQAD. The scale of the DMOS values is from 0 to 100. A higher value represents worse visual quality of the
image (refer to the images at the original resolution for better visual comparison). (a) Reference image: cim11. (b) cim11_3_5, DMOS:63.98. (c) cim11_4_7,
DMOS:37.50. (d) cim11_4_1, DMOS:76.54.

its distorted version Y are firstly segmented into textual
and pictorial layers based on their text segmentation index
map T . The quality of the textual and pictorial layers is then
separately evaluated by the proposed objective metric (to be
introduced in Sec. IV-A). A novel weighting strategy, derived
from the correlation analysis of subjective scores, is proposed
in Sec. IV-B to integrate the two quality scores Qt and Q p to
the final visual quality score Q of the distorted SCI.

A. Quality Evaluation of Textual and Pictorial Regions

It is known that the HVS is relevant to image luminance,
contrast and sharpness. They change along with various
image distortions, such as noise corruption, blur, quantization
and compression artefacts. Hence, they have been widely
investigated in the FR NIQA. In SSIM [24], the product of
three components of similarity between the reference patch x
and its distorted version y is computed to estimate the image
local quality:

SSI M(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (4)

where l(x, y), c(x, y) and s(x, y) are luminance, contrast and
structural similarity; α, β and γ are positive constants used
to adjust the relative importance of these three components.
A simple setting (α = β = γ = 1) is adopted in SSIM
and most of its variations [24]. Liu et al. [27] used gradient
similarity to replace the contrast/structural similarity in SSIM,
and proposed a weighting strategy to combine the luminance
and gradient similarity as follows:

q = (1 − W ) × g(x, y) + W × e(x, y) (5)

where q is the quality score of the distorted patch y;
e(x, y) and g(x, y) are luminance and gradient similarity.

W = 0.1 × g(x, y) is used as weighting value to highlight
the contribution of the gradient similarity to the final quality.
In [28], the authors found that, without any additional
information, using the image gradient similarity alone can
yield highly accurate quality prediction.

However, these interaction schemes of the properties cannot
work well for SIQA, since the HVS perception to textual and
pictorial regions are different. As illustrated in Sec. III-D, the
distortions in textual regions are not always playing the same
role to the overall quality. For example, subjects can easily
notice luminance and contrast change in pictorial regions.
However, they prefer to give high quality scores to texts with
high integrity and clear shape, even though their color intensity
or contrast has been greatly changed. Conversely, subjects are
sensitive to blurring artifacts appearing on textual regions.
As illustrated in Fig. 12, there is motion blur appearing on
the image in (b) and color intensity change occurring on the
image in (c). We can see that the background content and
color intensity of texts in (c) are much different from the
reference image in (a), while the background and contrast
of texts in (b) are well maintained. However, subjective tests
show that humans are more satisfied with (c) than (b), which
can be reflected from their DMOS values: 63.98 for (b) and
37.50 for (c). Therefore, in these cases, we should reduce the
effect of the luminance change to the overall quality of textual
regions. However, with much luminance change, as displayed
in Fig. 12 (d), subjects give low quality scores to this image
at their first impression. Hence, for these cases, the effect of
the luminance change in textual regions to the overall quality
should be enhanced.

Based on the above analysis, we propose a new scheme for
quality evaluation of distorted SCIs. In the proposed scheme,
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Fig. 13. Filters for calculating the sharpness values.

sharpness and luminance similarity between the reference and
distorted SCIs is computed. Sharpness is computed since it is
a good measure to summarize various distortions appearing in
images [28], [53]. The luminance similarity of textual regions
is adaptively integrated to the sharpness similarity, while only
sharpness similarity is considered for pictorial regions. For one
SCI X and its distorted version Y , given its text segmentation
index map T , their textual layers (Xt , Yt ) and pictorial layers
(X p , Yp) are calculated by Xt = X · T , X p = X · (1 − T ),
Yt = Y ·T and Yp = Y ·(1−T ). The luminance similarity map
Sl(Xt , Yt ) between the textual layers Xt and Yt is calculated
as follows:

Sl (Xt , Yt ) = 2 · μxt · μyt + c1

μ2
xt + μ2

yt + c1
(6)

where μxt and μyt denote the local mean values for each pixel
in the textual layers Xt and Yt . c1 is a parameter to avoid the
instability when the denominator is close to zero.

To compute the sharpness of images, we use the
multi-directional filters {hk}k=1,2,3,4 illustrated in Fig. 13.
These filters can capture the local variations of images at
four directions, including horizontal and vertical directions.
The sharpness of one image X is measured by the summary
of the first two maximum filtering results:

s(X) = |X · ha | + |X · hb|; (7)

where a and b are the index of the filter that lead to the first
two maximum results; | · | represents the absolute value of
the convolution of X and hk . Thus, the sharpness similarity
between Xt and Yt , and X p and Yp , are computed as:

St
s(Xt , Yt ) = 2 · s(Xt ) · s(Yt ) + c2

s(Xt )2 + s(Yt )2 + c2
(8)

S p
s (X p, Yp) = 2 · s(X p) · s(Yp) + c2

s(X p)2 + s(Yp)2 + c2
(9)

where c2 is a parameter to avoid the instability when the
denominator is close to zero.

The quality map for the pictorial part Q p_map is measured
by the sharpness similarity between pictorial regions.

Q p_map = S p
s (X p, Yp) (10)

The quality map for the textual part Qt _map can be calculated
by integrating the luminance and sharpness similarity maps as
follows.

Qt _map = [Sl(Xt , Yt )]α · [St
s(Xt , Yt )]β (11)

where α > 0 and β > 0 are parameters used to adjust the
effect of the two components. In this paper, we set β = 1
to simplify this definition, since the structural difference is

important to both textual and pictorial regions. α is used
to adjust the effect of the luminance component when the
textual layers are processed. As illustrated in Fig. 12, human
beings are not sensitive to intensity change derived from some
degree of quantization or contrast change, we calculate the
difference between the textual layers to measure the degree of
the intensity change. The difference is measured as follows:

d = (2 · v1 · v2)/(v
2
1 + v2

2); (12)

where v1 = max(Xt) − min(Xt ) and v2 = max(Yt ) −
min(Yt ). When the intensity change is small, the effect of the
luminance similarity to the visual quality should be reduced;
when the change is large, the effect of the luminance similarity
should be enhanced. Hence, the value of α can be determined
by d and the threshold δ as follows:

α =
{

d i f d > δ

1/d i f d ≤ δ
(13)

B. Proposed Weighting Strategy

As aforementioned, it is challenging to establish an uniform
formula to account for the interaction of the three regions.
There are many factors affecting human perception when
viewing SCIs, including area ratio and position of texts, size
of characters, content of pictures, etc. As an initial attempt
towards solving this problem, we initially investigate a statis-
tical property of SCIs that reflects impairments of test images,
rather than any specific factor. Here, image activity measure
is adopted to calculate the weights. Image activity values
reflect the variation of image content, which can be used to
differentiate images [54], [55]. Based on the activity measure
and the segmentation algorithm proposed in [41], we propose
a novel model to compute two weights (Wt and Wp) that can
measure the effect of textual and pictorial regions to the quality
of the entire image. In particular, given one reference SCI
and its text segmentation index map T in which textual pixels
are marked by one and pictorial pixels by zero, we calculate
the activity map A of the corresponding distorted SCI [41].
The activity maps At = A × T and A p = A × (1 − T ) of the
textual and pictorial regions can be calculated. Considering
the human visual acuity in the HVS (the human eyes have
high visual acuity to points closed to the fixation center,
and the visual acuity decreases with the distance increase
from the fixation point), a Gaussian mask G is used to weight
the activity values. Based on the weighted activity map,
two values Wt and Wp for the textual and pictorial parts
are computed as Eq. (14) and (15), which are subsequently
employed as weights to combine the two quality scores.

Wt =
∑m

i=1
∑n

j=1(A · T · G)i, j∑m
i=1

∑n
j=1(T )i, j

(14)

and

Wp =
∑m

i=1
∑n

j=1(A · (1 − T ) · G)i, j∑m
i=1

∑n
j=1(1 − T )i, j

(15)

where m and n represent the dimensions of the images. The
weighting maps for textual and pictorial parts of one SCI
example are shown in Fig. 14.
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Fig. 14. Weighting maps for textual and pictorial regions of one SCI example. (a) Reference image: cim1. (b) Weighting map for textual regions.
(c) Weighting map for pictorial regions.

Based on the calculated quality maps of textual layer
Qt _map and pictorial layer Q p_map, the quality scores of
the textual and pictorial regions are computed as the mean
values of the corresponding regions:

Qt = Qt _map · T∑m
i=1

∑n
j=1(T )

(16)

Q p = Q p_map · (1 − T )∑m
i=1

∑n
j=1(1 − T )

(17)

Following the same notation above, m and n denote the
dimension of the reference SCI. The final quality score Q
of the distorted image Y is computed as follows:

Q = Wt ∗ Qt + Wp ∗ Q p (18)

V. EXPERIMENTAL RESULTS

In this section, we first test the validity of the proposed
weighting strategy, by applying the weighting strategy to
subjective scores and some existing NIQA methods. We then
investigate the effectiveness of the proposed SPQA scheme to
assess the quality of SCIs in the SIQAD.

A. Analysis of the Proposed Weighting Strategy

1) Applying the Weighting Strategy to Subjective Data:
Since we obtain the three sets of subjective scores for entire,
textual and pictorial regions in SCIs, it is reasonable to verify
the proposed weighting strategy on the basis of subjective
scores. A quality score QE ′ of an entire SCI is predicted
based on the quality scores of textual and pictorial regions,
i.e., QT and Q P . The QE ′ is computed as follows.

QE ′ = Wt ∗ QT + Wp ∗ Q P (19)

where Wt and Wp are computed as introduced in Sec. IV-B.
The performance of the combination can be measured by
computing the correlation between QE ′ and ground truth
score QE . Meanwhile, we compare the proposed model with
a simple averaging combination of textual and pictorial scores.
In the averaging combination, the predicted quality scores
QEa is the mean of quality scores of textual and pictorial
regions:

QEa = 0.5 ∗ QT + 0.5 ∗ Q P (20)

TABLE II

COMPARISON OF TWO COMBINATION METHODS. THE PAIRED T-TEST IS

APPLIED TO THE QE ′ AND QEa . THE RESULT (H = 1, P < 0.05)

INDICATES THAT THE QUALITY SCORES GENERATED BY THE

TWO METHODS ARE STATISTICALLY DIFFERENT

TABLE III

COMPARISON OF TWO COMBINATION METHODS. MORE DETAILED

RESULTS OF THE NIQA METHODS ARE REPORTED IN SEC. V-B

Table II reports the comparison results. It shows that the results
with the proposed weighting strategy are more consistent
with human visual perception. Although there is still room
to improve the performance, the proposed weighting strategy
reflects the contributions of textual and pictorial regions with a
high reliability. We also checked the performance of area-ratio
based weighting method, that is to say, the area ratio of textual
region (pictorial region) is used to replace the Wt (Wp). Since
the area ratios of textual regions in the SIQAD just vary from
35% to 60%, the correlation result of the area-ratio weighting
method is similar to the result of average combination.

2) Applying the Weighting Strategy to Some Existing NIQA
Metrics: In this section, we apply the weighting strategy
to some representative NQIA metrics, such as SSIM [24],
VIF [25], IFC [56], FSIM [26] and GMSD [28]. In particular,
we firstly separate SCIs into textual and pictorial layers,
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TABLE IV

CORRELATION RESULTS OF THE DMOS VALUES AND THE OBJECTIVE SCORES GIVEN BY 12 METRICS. THE PAIRED T-TEST IS APPLIED TO THE

PROPOSED SPQA AGAINST THE 11 NIQA METHODS. THE RESULTS (H = 1, P < 0.05) FOR EACH PAIR INDICATES THAT THE SPQA IS

SIGNIFICANTLY BETTER THAN THE TESTED 11 NIQA METHODS

and then substitute the objective evaluation part in the
SPQA scheme with the NIQA metrics. The quality of textual
and pictorial layers is evaluated by the NIQA metrics
separately, and then is combined to estimate the final overall
quality via the proposed weighting strategy. The modified
NIQA methods are marked by weighted metrics,
e.g., W_SSIM, W_FSIM, W_GMSD, W_IFC and W_VIF.
The correlation between overall DMOS and predicted scores
by the modified NIQA metrics is computed and reported in
Table III. From this table, we can see that the performance
of some modified NIQA metrics are improved when the
proposed weighting strategy is integrated, such as W_SSIM,
W_FSIM and W_GMSD. However, the improvement is
still far away from satisfaction in evaluating the visual
quality of distorted SCIs. As to the W_IFC and W_VIF,
the performance drops somehow. Therefore, new objective
metrics specific for SCI quality assessment is desired, and the
proposed SPQA at some extent has filled this requirement.
Overall, the proposed SPQA with the weighting strategy
works much better than other relevant existing objective
metrics.

B. Performance of the Proposed SPQA on the SIQAD

In this section, we use the images in the SIQAD to conduct
the comparison experiments by using the proposed SPQA

and other existing ones. The following 11 state-of-the-art
NIQA metrics are adopted: PSNR, SSIM [24], MSSIM [57],
IWSSIM [58], VIF [25], IFC [56], VSNR [59], MAD [21],
FSIM [26], GSIM [27] and GMSD [28]. These metrics are
implemented using the codes on their websites. We apply all
the metrics to the grayscale version of images, and compute the
correlations between the predicted scores and DMOS values
in terms of PLCC, RMSE and SROCC. Meanwhile, the
correlations of specific distortions are calculated, to investigate
the effectiveness of objective methods for different types of
distortions. We set c1 = 0.0026, c2 = 0.0062, and δ is
experimentally set to 0.95 in the experiments.

We report the correlation results in Table IV, where the
first two with the best performance are marked with the bold
font. It is shown that the proposed SPQA achieves the highest
overall correlation with DMOS values. Correlations between
the SPQA scores and DMOS values for different distortion
types are distinct from each other, as most of the other metrics.
Particularly, there are much higher values for the first three
distortions (i.e., GN, GB and MB) than others. The reason
is that observers are sensitive to such kinds of distortions
allocated in the entire image, and are able to distinguish the
images with different distortion levels. For the remaining four
types, especially for the CC case, the correlation results are
not so high. The reason is that the contrast change only affects
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Fig. 15. Scatter of predicted quality scores by some metrics against the DMOS values on the SIQAD. The vertical axis in each figure is the DMOS values.
(a) PSNR. (b) SSIM. (c) MSSIM. (d) VIF. (e) IFC. (f) FSIM. (g) GSIM. (h) GMSD. (i) SPQA.

the intensity of texts, but not the integrity of texts about which
subjects care more. By contrast, the NIQA metrics take the
intensity variation into account, resulting in the inconsistency
with DMOS values. Taking the VIF for instance, it performs
well for quality evaluation of SCIs with some distortion
types, such as GN, blurring and compression artifacts. That
is because the influence of such distortion type to textual
and pictorial regions is similar. In other word, the visual
information loss of these two regions increases along with the
increase of degradation level. However, for the CC case,
the visual information loss of textual regions computed by
the VIF does not change highly consistently with the change
of the degradation level. The proposed SPQA has taken this
situation into account, and thus the predicted quality of all
the test images has higher consistency with human perception
compared with other existing metrics.

In addition, we test the performance of the parameter setting
of α in the proposed SPQA. We combine the luminance and
sharpness similarity simply by α = β = 1, and mark this
method as S P Q A_S. The correlation results are as follows:
P LCC = 0.8243, S ROCC = 0.8029, RM SE = 8.0254,

from which we can see that the performance of S P Q A_S is
not as good as that of SPQA without the adaptive adjustment
of α. Although the adjustment might be over-estimated for
some cases (e.g., GN and JPEG), resulting in the performance
drop for the single distortion type, the overall visual quality of
images from different distortion types will be highly consistent
with human visual perception.

In Fig. 15, we also provide the scatter plots of the predicted
quality scores against the DMOS values for some repre-
sentative objective metrics (such as PSNR, SSIM, MSSIM,
VIF, IFC, FSIM, GSIM, GMSD and SPQA) on the SIQAD.
The seven kinds of distortions (GN, GB, MB, CC, JPEG,
JPEG2000 and LSC) are separately displayed with different
markers. From Fig. 15, it can be observed that the predicted
scores by the SPQA have the most centralized distribution than
others. In most of other metrics, the distribution of predicted
scores on all distortion types is somehow dispersive. For
example, for PSNR and GSIM, the distribution of predicted
scores on the CC distortion deviates much from the distri-
bution on other kinds of distortions, degrading their overall
performance.
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Fig. 16. Visual quality comparison of SCIs with different distortion types. The DMOS values and the quality scores predicted by four different metrics
(PSNR, SSIM, VIF and SPQA) are provided for comparison. (a) Reference image (cropped from ‘cim13’ in SIQAD). (b) Image with CC, DMOS: 40.2294,
PSNR: 20.5616, SSIM: 0.8595, VIF: 0.5850, SPQA: 0.2546. (c) Image with GB, DMOS: 48.7758, PSNR: 22.6598, SSIM: 0.9054, VIF: 0.5291,
SPQA: 0.3037. (d) Image encoded by JPEG, DMOS: 51.2387, PSNR: 24.6442, SSIM: 0.8653, VIF: 0.4599, SPQA: 0.3253. (e) Image with GN,
DMOS: 65.8586, PSNR: 24.4163, SSIM: 0.6302, VIF: 0.4900, SPQA: 0.4736. (f) Image with MB, DMOS: 79.8107, PSNR: 19.7835, SSIM: 0.8341,
VIF: 0.4804, SPQA: 0.5488.

In Fig. 16, a reference SCI (a) and its several distorted
versions (b)-(f) are given for visual quality comparison.
We can see that, from (b) to (f), the DMOS values of
these images increase, indicating the descending of the visual
quality. However, the three measures (PSNR, SSIM and VIF)
do not have the same changing tendency, and this means that
they cannot achieve high consistency with the DMOS values
in these cases. These three metrics generally capture the
practical variations occurring in the distorted images, without
considering the different perception of viewers to different
regions in SCIs. For instance, in the subjective test, observers
prefer to give high scores to images with clear and unbroken
textual regions, even though their intensity values have been
changed. Compared with images in (c) and (d), the image (b)
is with the highest visual quality. However, PSNR and SSIM
values of (c) and (d) are higher than those of (b). Additionally,
most subjects have a bad impression on the blurring effect at
the first sight, and thus give low scores to the blurred images.
As shown in Fig. 16 (d)-(f), the images in (d) and (e) have
better visual quality than image (f) with severe motion blur.
However SSIM value of (e) and VIF value of (d) are lower.
This phenomenon can also be observed in Fig. 8, where most
of the DMOS values for blurred images (from the first eight
to the twenty-one points) are higher than other images.

C. More Analysis on the SPQA Metric

When the proposed SPQA algorithm is used to predict the
visual quality scores, other doubts may raise: for example,
does the predicted textual score Qt have high correlation with

TABLE V

CORRELATION RESULTS BETWEEN SUBJECTIVE (QE, QT AND QP) AND

PREDICTED QUALITY SCORES (Q, Qt AND Qp), RESPONDING

TO ENTIRE, TEXTUAL AND PICTORIAL REGIONS IN SCIs

the subjective textual score QT ? How about the performance
if either Wt or Wp in the weighting strategy is set to zero?
In order to answer these questions, we check the correlations
between the subjective scores (QE, QT and QP) and predicted
objective scores (Q, Qt and Qp), for example, QT and Qt ,
Q P and Qp, QE and Qt , QE and Qp. The correlation
results are given in Table V. From this table, we can find
that although the predicted textual score Qt has relatively
higher correlation with the ground truth textual scores QT ,
the result (i.e., correlation between QE and Qt) drops if just
using the textual scores to estimate the overall quality scores.
This also occurs when the pictorial scores are used alone to
predict the overall quality scores. We also apply the average
combination to the objective scores Qt and Qp, and the
obtained overall quality scores are marked as Qa in Table V.
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We can find that, the objective quality scores Q computed via
the proposed SPQA with the weighting strategy achieve the
highest correlation results with the subjective scores.

VI. CONCLUSION

In this paper, we have carried out an in-depth study on
perceptual quality assessment of distorted SCIs, from both sub-
jective and objective perspectives. The first large-scale image
database, SIQAD, is built to explore the subjective quality
evaluation of SCIs. DMOS values of images in the database
are obtained via the subjective test, and their reliability is
verified. The built SIQAD is expected to facilitate further
research in SCIs. Based upon the three subjective scores
for textual, pictorial and entire regions, we find that textual
regions contribute more to the quality of the entire image
in most distortion cases. The proposed weighting strategy
works well to account for this relationship. Combined with
the weighting strategy, a new objective quality metric is
constructed to separately assess the visual quality of textual
and pictorial regions. The proposed integration scheme, named
SPQA, outperforms existing 11 NIQA objective metrics on
visual quality evaluation of distorted SCIs, as demonstrated
by the experimental results.
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