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Abstract— Single-image super-resolution (SR) reconstruction
via sparse representation has recently attracted broad interest.
It is known that a low-resolution (LR) image is susceptible to
noise or blur due to the degradation of the observed image,
which would lead to a poor SR performance. In this paper,
we propose a novel robust edge-preserving smoothing SR (REPS-
SR) method in the framework of sparse representation. An EPS
regularization term is designed based on gradient-domain-guided
filtering to preserve image edges and reduce noise in the
reconstructed image. Furthermore, a smoothing-aware factor
adaptively determined by the estimation of the noise level of LR
images without manual interference is presented to obtain an
optimal balance between the data fidelity term and the proposed
EPS regularization term. An iterative shrinkage algorithm is used
to obtain the SR image results for LR images. The proposed
adaptive smoothing-aware scheme makes our method robust to
different levels of noise. Experimental results indicate that the
proposed method can preserve image edges and reduce noise
and outperforms the current state-of-the-art methods for noisy
images.

Index Terms—Single image super-resolution, guided image
filtering, regularization, edge preserving.

I. INTRODUCTION

IGH-RESOLUTION (HR) images play an important role

in many image applications, such as remote sensing,
medical diagnosis, surveillance video and pattern recogni-
tion [1], [2]. However, due to the limitations of image acquisi-
tion and storage devices in some real applications, the image
resolution cannot satisfy practical demand [3]. To increase
image resolution, one direct solution is to reduce the pixel
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size or increase the chip size of the sensors, which would
generate shot noise degrading the image quality and increasing
the cost, respectively [4]. To overcome these limitations, many
studies try to use signal processing techniques to generate
HR images by LR images. This process is called image
super-resolution (SR) reconstruction [2]. Generally, image SR
reconstruction aims to estimate a HR image from one or more
observed low-resolution (LR) image frames based on reason-
able assumptions or prior knowledge of the image generation
model [5]. The SR problem was first studied by Tsai et al
in 1980s [6] and is regarded as an ill-posed problem [4].
During the past decades, various image SR methods have
been proposed to deal with this conditionally insufficient
problem [2], [3], [5]-[10].

Image SR reconstruction methods can be categorized as
multi-frame image SR methods [11]-[14] and single-image
SR methods [7]-[10], [15]-[17]. The multi-frame image SR
method can be divided into two basic types of methods: fre-
quency domain methods and spatial domain methods [13]. The
frequency domain methods aim to eliminate spectrum alias-
ing and reconstruct the high frequency information, includ-
ing Fourier Transform-based methods [6], Discrete Cosine
Transform-based methods [18] and wavelet transform-based
methods [19]. Though these methods are computationally
efficient, the frequency domain methods are limited to model
the image degradation process and have difficulty to use
image prior knowledge [1]. To overcome these limitations,
many spatial domain methods have been designed by making
use of complicated global motion, local motion and optical
blurring to establish a comprehensive observation model for
image degradation processing. The spatial domain methods
such as non-uniform interpolation method [20], iterative back
projection (IBP) method [21] and projection onto convex
sets (POCS) [22] are popular in image SR due to their good
reconstruction ability. The drawback of the spatial domain
methods are generally computationally expensive [11]. Fur-
thermore, in practical applications, it is not easy to obtain
an adequate number of LR images, and to estimate a HR
image from multiple blurred and noisy images [23]. Therefore,
compared with multi-frame image SR methods, single-image
SR methods are much more desired in practical applications.

Single-image SR methods can be further divided into
interpolation-based methods [24]-[26], reconstruction-based
methods [27], [28] and example learning-based meth-
ods [16], [29]-[31]. Interpolation-based methods use the val-
ues of the adjacent pixels to estimate the values of interpolated
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pixels. The interpolation-based methods are comparatively
simple and have the advantage of relatively low computational
complexity [2], [16]. However, the interpolation-based meth-
ods usually tend to generate the reconstructed HR images with
edge halos and artifacts [4], [7].

Reconstruction-based methods [28], [32] generate a HR
image based on designed degradation model. Based on max-
imum a posteriori (MAP) theory which forces some prior
constraints into the cost function, the SR problem turns
out to be well posed [1]. With the MAP theory by image
prior constrains, the SR problem can be transformed into
a minimization problem as x = argmin[L(y,x) + AU (x)],
where L(-) is the data fidelity term that represents the degree
of consistency between the HR image x and LR image y,
U (+) is the regularization term describing the prior information
of the original image, and 4 is the regularization parameter,
which is used to weight the contribution given by L(-) and
U(-) during the processing [13]. This type of SR methods
make use of image prior knowledge or reconstruction con-
straints to regularize the solution. Various kinds of priors
have been incorporated into reconstruction-based methods,
e.g., edge prior [33], gradient prior [34], non-local means
priors [27], [35] and sparsity priors [16], [36]-[41]. The com-
bination of different types of prior knowledge makes a better
model for characterizing various image features and benefits
the SR performance. However, reconstruction-based methods
usually smear out image details, resulting in the loss of fine
structures and overly smooth reconstruction results [3], [7].

In contrast to the above methods, the example learning-
based methods estimate the HR image from the LR image
by learning the relationship between the HR and LR image
patches from the sample database [8]. These methods build
a suitable training set and make full use of image priors
to reduce edge halos and artifacts effectively. Therefore,
we mainly focus on the study of the example learning-
based SR method in this paper. Recently, a variety of
example learning-based methods for SR image reconstruc-
tion have been proposed to obtain better SR results than
conventional approaches. Timofte et al. [30] proposed the
anchored neighborhood regression (ANR) scheme by sparse
dictionary learning and used global collaborative coding for
fast SR reconstruction. Yang et al. [36] used the sparse
representation to reconstruct the HR image. This method
learns two compact dictionaries by jointly training from the
LR and HR image patch pairs, and assumed that the LR
and LR image patches have the same sparse representation
coefficients. Dong et al. [37] proposed an adaptive sparse
domain select (ASDS) and adaptive regularization image SR
scheme by sparse representation. A set of autoregressive
models and nonlocal self-similarity are used as regularization
terms in the sparse representation model to further improve
the reconstruction quality. Peleg and Elad [38] proposed a
single image SR method using a statistical prediction model
based on sparse representation. Zeyde et al. [42] used K-
SVD [43] for dictionary training and principal component
analysis (PCA) to decrease the dimension of the LR image
patches. Dong et al. [44] proposed a non-locally central-
ized sparse representation (NCSR) method by introducing the
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sparse coding noise (SCN) and nonlocal self-similarity into
the sparse model. Recently, Dong et al. [10] used a deep
convolution neural network to learn mappings between LR
and HR images and obtained excellent reconstruction quality.
Although various types of SR reconstruction methods have
been proposed to solve the ill-posed inverse problem in SR,
they might produce undesired artifacts in HR images [41].
In particular, the SR performance becomes poor when the SR
methods are conducted on blurred and noisy LR images.

It is known that the key of the SR problem is to recover
the loss details of HR images and preserve image edges.
In this paper, we propose a novel robust image edge-preserving
smoothing super-resolution (REPS-SR) method based on the
adaptive edge-preserving smoothing (EPS) regularization term.
Specifically, the gradient domain guided image filtering [45]
which has the property of edges preserving and smoothing
is employed to design an EPS regularization in the proposed
method. To the best of our knowledge, this is the first attempt
to use gradient domain guided filter in image SR. Besides,
K-means clustering and PCA are used to learn a compact dic-
tionary. The proposed REPS-SR method uses the non-locally
centralized sparsity and EPS regularization term as regularized
terms to formulate a constrained optimization problem that
can be solved by an iterative shrinkage algorithm [46]. The
main contributions of this work over current methods can be
summarized as follows.

1) A novel robust image SR reconstruction method, i.e.,
REPS-SR, is presented for single image SR by EPS regular-
ization.

2) The EPS regularization term is designed and incorporated
into the sparse model to preserve image edges and reduce the
noise in the reconstructed image.

3) A smoothing-aware factor is adaptively determined with-
out manual interference by the estimation of unknown noise
level to obtain an optimal balance between the data fidelity
and the proposed EPS regularization term.

The remainder of this paper is organized as follows.
In Section II, we review the related work of sparse represen-
tation theory. Section III introduces the model of the proposed
REPS-SR method in detail. In Section IV, we present extensive
experiments and corresponding analysis. The conclusion is
summarized in Section V.

II. RELATED WORK

The image observation model describes the relationship
between the original and observed images. In the image SR
problem, the original and observed images are corresponding
to HR and LR images, respectively. The image SR reconstruc-
tion aims to obtain the HR image from the degraded LR image.
The problem of image SR reconstruction can be generally
modeled as

y=Hx+v, ey

where H is a degradation matrix that represents blurring
and a down-sampling operator, x is the original image, y is
the observed image and v is the additive noise. Due to the
insufficient condition of the SR problem, recovering HR image
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might be not unique. To solve this ill-posed problem, many
solutions have been proposed for single image SR problem
in the past decades [8]-[10], [29]-[42]. Recently, there have
been a large number of studies on sparse representation for
the image SR problem.

The sparsity prior has been found to be a good image
prior and has attracted great attention for image SR prob-
lem [17], [32], [39]-[44]. Researchers have found that nature
image patches or signals could be sparsely represented as a
sparse linear combination with respect to a dictionary, such
as a DCT, wavelet or curvelet dictionary. The basic idea of
sparse representation is as follows:

x ~ P, 2)

where x € R™*! is an original image patch or signal, ® €
R™*K is an over-complete dictionary of K atoms, e € RX*!
is a vector where most coefficients in « have few nonzero
entries. The sparse coefficients of x can be obtained by solving
an Jp-minimization optimization problem formulated as

o, = argmin |||, s.t.x~ Pa, 3)

where |||y denotes the number of non-zeros in a. However,
the lp-minimization is an NP-hard optimization problem [4].
It is suggested that as long as the desired coefficients o are
sufficiently sparse, the problem can be efficiently solved by
its approximate /{-minimization [36], as follows:

o, =arg min|a|;, s.t. x= ®a. 4)

The /;-minimization optimization problem can be similarly
formulated as

ax = argmin { |x — @al} +2 ], 5)

where 4 is a constant which balances the sparsity of the
solution and the fidelity of the approximation to x. In image
SR problems, what we obtain is the degraded image y, and
what we aim to recover is the original x from y. The problem
can be well formulated by solving the /{-minimization as

oy :argmin{||y—H<I>ot||%+/1 ||oc||1}. (6)

Once the sparse coding « is obtained, the HR image x can be
estimated by x = ® a,.

In sparse representation theory, the learning of dictionary
® is of great importance. Although analytically designed
dictionaries such as DCT, wavelet, curvelet and contourlet
share the advantages of being efficient and fast in image SR
problems, they lack the adaptive ability for different image
structures. Recently, various types of example-based dictionary
learning methods have shown promising performance for
image sparse representation [35]-[37]. These schemes aim
to learn over-complete dictionaries which are redundant for
representing various complex structures in natural images.
However, sparse coding over a highly over-complete dic-
tionary is unstable [44] and may cause visual artifacts [2].
Apart from the methods above, researchers have proposed
adaptive dictionary learning methods which learn dictionaries
from a set of example image patches. Yang et al. [47]
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Algorithm 1 Pseudocode of the REPS-SR-Based Single Image
Super-Resolution

Input: a LR image y and magnification factor.
Output: a HR image x.
1. Initialization:
(a) Set the initial estimation X by bicubic interpolation
for image super-resolution;
(b) Set the initial parameters 1,, J and c. Estimate the

unknown noise level according to [49] and adaptively
determine the smoothing-aware factor 1, using Eq.

(15).
2. Outer loop (dictionaries learning and clustering): iterate
ont=1toT

(a) Update the dictionaries {(I) k} via K-means clustering
and PCA;
(b) Inner loop: for each iterationj =1to J do

1) Compute the gradient domain guided image fil-
tering image %% by Eq. (10);

2) Update x“*¥» by Eq. (11), where J is a
pre-determined constant;

3) Compute the sparse coding coefficients of each
patch by Eq. (13), where @, is the dictionary
assigned to patch ¥,=R,x"""?;

4) Update the sparse coding g*" by using the it-
erative shrinkage operator given in Eq. (14);

5) Update the regularization parameter 4, and the

nonlocal means g, according to [44], if

mod(j, j;)=0.
6) Reconstruct the estimated image by using Eq.
®);

(c) Update the HR image by x = x“*".

clustered HR image patches into several groups of geomet-
ric patches to learn its correspondingly geometric clustered
dictionaries and the clustering aggregation scheme is used
to estimate original image patches. In this paper, a more
compact clustering PCA dictionary is learned according to the
NCSR [44] method. In the next section, the proposed REPS-
SR algorithm is presented which includes dictionary learning
scheme, the model of the proposed method and the optimizing
algorithm.

III. PROPOSED REPS-SR ALGORITHM

In this section, we introduce the proposed REPS-SR
algorithm in detail. Firstly, the K-means clustering and
PCA are used to learn sub-dictionaries from LR images.
Then, the proposed EPS regularization term is introduced
to preserve the edges of the reconstructed image and
remove artifacts. An adaptive smoothing-aware factor deter-
mination scheme is proposed and the iterative shrinkage
algorithm is used to solve the SR problem. The proce-
dure of the proposed REPS-SR method is summarized in
Algorithm 1.
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TABLE I
AVERAGE PSNR (dB)/SSIM RESULTS ON SI1X TEST IMAGES WITH DIFFERENT PARAMETERS

Noise level o

A2
0 1 2 3 4 5 6 7 8 9 10
0 29.8900 28.9167 29.1450 29.0333 28.8083 28.5400 28.2800 28.0333 27.7583 27.5200 27.2767
0.8735 0.8472 0.8467 0.8376 0.8273 0.8165 0.8060 0.7947 0.7838 0.7730 0.7617
0.1 29.9583 28.9550 29.2033 29.0967 28.8550 28.5950 28.3233 28.0650 27.7950 27.5500 27.3017
: 0.8715 0.8525 0.8529 0.8441 0.8334 0.8222 0.8112 0.8001 0.7882 0.77685 0.7648
0.2 29.8850 28.9883 29.2350 29.1267 28.8850 28.6150 28.3483 28.1000 27.8003 27.5783 27.3333
: 0.8585 0.8520 0.8533 0.8455 0.8354 0.8248 0.8145 0.8039 0.7925 0.7812 0.7693
03 29.7533 28.9900 29.2400 29.1333 28.8950 28.6367 28.3700 28.1150 27.8517 27.6050 27.3617
: 0.8457 0.8501 0.8526 0.8456 0.83591 0.8260 0.8160 0.8060 0.7954 0.7847 0.7738
0.4 29.5600 28.9750 29.2417 29.1383 28.9000 28.6366 28.3766 28.1367 27.8667 27.6667 27.3867
: 0.8297 0.8479 0.8514 0.8449 0.83593 0.8262 0.8168 0.8072 0.7968 0.7869 0.7766
05 29.3800 28.9450 29.2333 29.1383 28.9017 28.6383 28.3850 28.1317 27.8800 27.6400 27.4000
: 0.8167 0.8450 0.8500 0.8444 0.8355 0.8259 0.8169 0.8075 0.7978 0.7882 0.7787
06 29.1950 28.9067 29.2183 29.1250 28.8950 28.6386 28.3833 28.1366 27.8833 27.6500 27.4100
: 0.8053 0.8421 0.8483 0.8432 0.8349 0.8254 0.8167 0.80768 0.8015 0.7891 0.7799
0.7 29.0333 28.8667 29.18667 29.1117 28.8817 28.6267 28.3883 28.1383 27.8783 27.6567 27.4233
: 0.7959 0.8393 0.8461 0.8419 0.8340 0.8248 0.8173 0.80768 0.7982 0.7898 0.7809
08 28.8867 28.8150 29.1650 29.0933 28.8767 28.6233 28.3817 28.1393 27.8783 27.6550 27.4333
: 0.7869 0.8353 0.8439 0.8404 0.8332 0.8243 0.8160 0.8077 0.7984 0.7899 0.7814
09 28.6783 28.7583 29.1333 29.0733 28.8617 28.6183 28.3767 28.1333 27.8850 27.6583 27.4333
: 0.7785 0.8308 0.8411 0.8384 0.8316 0.8235 0.8154 0.8070 0.7989 0.78995 0.7817
1 28.5117 28.7050 29.1050 29.0617 28.8483 28.6133 28.3683 28.1350 27.8887 27.6583 27.4355
0.7694 0.8261 0.8387 0.8364 0.8301 0.8222 0.8144 0.8065 0.7980 0.78998 0.78175
11 28.4017 28.6517 29.0817 29.0400 28.8267 28.5950 28.3633 28.1200 27.8750 27.6566 27.4367
: 0.7649 0.8210 0.8368 0.8346 0.8285 0.8204 0.8135 0.8047 0.7964 0.78996 0.78176
12 28.2817 28.6100 29.0500 29.0233 28.8200 28.5850 28.3450 28.1183 27.8650 27.6517 27.4350
: 0.7581 0.8196 0.8350 0.8334 0.8274 0.8191 0.8117 0.8034 0.7951 0.7878 0.7818

A. Learning the Self-Example Sub-Dictionaries

Learning a representative dictionary is a critical issue in
sparse representation modeling. In the proposed REPS-SR
model, a series of sub-dictionaries are learned to code var-
ious image structures. In contrast to the ASDS method [37],
we learn the sub-dictionaries from the image itself which
makes the proposed REPS-SR method more adaptive for
different images. In the proposed method, we first extract
image patches from image x. In order to learn a series of
sub-dictionaries to code various local image structures, a set of
image patches will be selected to be involved in the dictionary
learning process. The image patch is selected when its inten-
sity variance is greater than a threshold A. This patch selection
criterion tries to exclude the smooth patches from training
and guarantees that only these patches including a certain
amount of edge structures are used to learn the dictionary.
Suppose that M image patches X = [x1,Xx2,...Xx)] are
selected, we have to learn K sub-dictionaries from X so that
the most relevant sub-dictionaries can be selected adaptively
for the local image patches. The image patches are clustered
into K clusters and we learn a compact dictionary from each
cluster. To make the dictionaries representative for image
edges and local structures, the high-pass filtering is used to

process the entire set of image patches before clustering. The
K -means algorithm is adopted to cluster the high-pass filtered
image patches into K clusters. Since learning an over-complete
dictionary is computationally costly, a compact dictionary is
learned using PCA for the reason that the patches in a cluster
tend to have similar structures and redundancy information. Sk
denotes the sub-dataset after high-pass filtering and K-means
algorithm, and $2; denotes the co-variance matrix of Sk.
By applying PCA to 2, an orthogonal transformation matrix
P; can be obtained. Then, let P;x be the dictionary of Sk
and o = PkT Sk be the sparse representation coefficient, an
approximate solution of the objective function can be obtained:

)

With the scheme described above, the K sub-dictionaries of Si
are finally learned. ® is constructed by ®; = [P, P2, ... Px].
Once the over-complete dictionary ®; and sparse code o
are obtained, each image patch can be well represented by
Eq. (2). In the proposed REPS-SR scheme, we adaptively
select one sub-dictionary from the K-means PCA dictionaries
to code it, leading to a stable and sparse representation of the
given patch. The image X can be reconstructed by making
use of all the image patch information. The approximate

(@1, ) = argmin {18 — @ oel[F +4 o1 .
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and straightforward least-square solution can be formulated
as follows:

fg:( "R Rl) 12721 (R @eri),  ®

where R; is the matrix that extracting patch x; from the image
x; N is the number of image patches; and «, ; is the sparse
coefficient of each image patch over the sub-dictionary ®y.
After learning dictionary @, we propose to design the REPS-
SR model. The detailed algorithm of the proposed SR model
is presented in the next subsection.

B. Proposed REPS-SR Model

Here, we propose to use the REPS-SR method to solve the
single-image SR problem. Since image patches often contain
repetitive patterns, such nonlocal redundancy is very helpful
for improving the reconstruction performance of images. The
nonlocal self-similarity is used as a regularization term to
provide a good estimation of ;. Meanwhile, considering that
image edges convey abundant image information, we use the
image edges as a regularization term to constrain the image
SR model. Here, an EPS regularization is designed to be
incorporated into the sparse model. In the REPS-SR model,
the reconstructed image x at each iteration is regarded as
the guidance image and the input filtering image. During
iterative processing, the proposed EPS regularization term
constrains the reconstructed HR image close to the filtered
image which is an edge-preserving smoothing image. The
reconstructed image edges can be preserved and the noise can
be reduced. Furthermore, the edges of reconstructed images
can be enhanced after multiple iterations. Mathematically,
the proposed REPS-SR model for the single image SR problem
can be formulated as follows:

Iy ~ Hor|;
o, = argmin —i—ilzuul ﬂt”] . 9)

+ 42 Hx _xG”z

On the right side of Eq. (9), the first term is data fidelity of the
solution; the second is a non-local self-similar regularization
term; the third is the proposed EPS regularization term. o;
is the sparse coefficient of each image patch x; over the
dictionary ®; B, is the nonlocal means of «; [44] in the sparse
coding domain; 11 and A are the regularization parameters;
x is the output image by the gradient domain guided filtering,
which can be calculated as follows:

-~ _ -

X5 =dapx —i—bp, (10)

where ap = |ﬂ||2p€91(p)ap and b, =

|9(l| Zp <21 (p) by are the average of a, and b, [45].

Here, x is the guidance image and x(G) is the filtering
output image. In the next subsection, we propose to use
iterative shrinkage algorithm [46] to optimize the proposed
REPS-SR model.
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Fig. 1. The optimal value of A, for different noise levels.

C. Iterative Shrinkage Algorithm

As the SR problem is non-convex, it is difficult to pursue an
exact solution. In the proposed method, an iterative shrinkage
algorithm is used to solve REPS-SR objective function in
Eq. (9). We first update the HR image x using the gradient
descent method as follows:

' (y - Hx"

(1) @t~ |’
+/12(() (6))(x()_x(6))

where ¢ is a small C(gnstant and x “; is the current estimation
of the HR image. x; is the output image by gradient guided
filtering. By substituting Eq. (10) into Eq. (11), we obtain

~(1+1/2) ~(1)
X X

(1)

(y HJ?(I)

)6

Then the sparse coding coefficients «; can be updated as
follows:

HT

_(1+1/2)
X
+ A2 (

~()

12)

(t+1/2) . ~(t+1/2)

=®/ R x (13)
where @ denotes the PCA dictionary of a cluster obtained by
K-means clustering. With the updated «;, the non-local self-
similar sparse coefficients f8; can be estimated according to
reference [44]. To further estimate the sparse coding coefficient
a;, an iterative shrinkage operator is selected and the updating
processing can be formulated in the following form:

<I>T T( _Ho (t+1/2))/
a§t+1) — Sr( H &; ¢

ta z+1/2 _ B, )"Hgi’ (14)

where §; is the classic soft-thresholding operator, and ¢ is an
auxiliary parameter guaranteeing the convexity of the shrink-
age function. With the updating sparse coding coefficient o;,
HR image patches are updated by x(”r ) = = Py oc(tH) Finally,
the whole HR image can be reconstructed by averaging all of
the reconstructed patches in Eq. (8).
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Fig. 3. Visual comparison samples of the proposed method and other state-of-the-art methods on ‘Butterfly’ image with a scale factor of 3, noise level ¢ = 0.
(a) LR. (b) original. (c) Bicubic. (d) NARM. (e) MSEPLL. (f) ASDS. (g) NCSR. (h) SMSR. (i) REPS-SR.

TABLE II
PSNR (dB)/SSIM RESULTS ON THE RECONSTRUCTION OF HR IMAGES WITH A SCALE FACTOR OF 3, NOISE LEVELo =0

Images REPS-SR SMSR[3] NCSR[44] ASDS[37] MSEPLL[40] NARM[41] Bicubic
Butterfly 28.51/0.9024 28.34/0.9243 28.08/0.9159 27.35/0.9057 28.14/0.9142 22.61/0.7856 20.78/0.7175
Flower 29.59/0.8530 29.65/0.8610 29.50/0.8564 29.18/0.8466 29.02/0.8392 25.52/0.7124 24.83/0.6753
Hat 31.39/0.8631 31.60/0.8771 31.27/0.8703 31.01/0.8717 30.94/0.8583 27.31/0.7931 27.20/0.7778
Parrots 30.51/0.9077 30.81/0.9188 30.47/0.9147 30.10/0.9099 30.04/0.9076 26.15/0.8399 25.58/0.8261
Plants 34.10/0.9169 34.22/0.9208 34.04/0.9189 33.42/0.9074 33.15/0.8983 28.95/0.8120 27.83/0.7875
Leaves 28.14/0.9174 27.80/0.9306 27.44/0.9216 26.94/0.9096 26.35/0.8984 21.51/0.7469 19.83/0.6411
Ppt 25.75/0.8942 24.17/0.9059 25.16/0.9048 24.71/0.8987 25.17/0.9069 21.09/0.7883 19.98/0.7455
Parthenon 27.23/0.7454 27.24/0.7551 27.18/0.7507 26.89/0.7367 26.95/0.7397 24.70/0.6359 24.12/0.6205
Bird 35.86/0.9530 35.77/0.9596 35.80/0.9570 35.53/0.9536 35.21/0.9487 29.24/0.8645 27.53/0.8363
Eyetest 23.20/0.8779 20.73/0.8884 21.69/0.8892 20.20/0.8508 22.36/0.9078 17.76/0.7696 16.59/0.7129
Comic 25.35/0.7888 25.38/0.8014 25.31/0.7974 25.16/0.7895 25.19/0.7856 22.20/0.6174 21.40/0.5782
Starfish 29.32/0.8674 29.51/0.8783 29.25/0.8727 28.88/0.8676 28.73/0.8588 24.78/0.7291 23.86/0.6942
Average 29.08/0.8739 28.77/0.8851 28.77/0.8808 28.28/0.8707 28.44/0.8720 24.32/0.7579 23.29/0.7177

D. Adaptive Smoothing-Aware Factor

In the proposed REPS-SR model, the regularization para-
meter 11 controls the tradeoff between the fidelity to data and
the nonlocal regularization, and A, controls the smoothness of
the solution. A suitable choice of regularization parameter is
beneficial to obtain a global optimal solution and improve the
convergence rate. Dong et al. [44] proposed to use the MAP

estimator to adaptively determine the regularization parameter
A1 which gets good SR performance. In the proposed method,
the determination of 4 uses the same scheme as the NCSR
model. To make our method more competitive, we propose
to adaptively obtain the smoothing-aware factor 1. In the
SR problem, a large value of the regularization parameter
will be used when the number of LR images is small or the
fidelity of the observed data is low, which might be caused
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Fig. 4. Visual comparison samples of the proposed method and other state-of-the-art methods on ‘Plants’ image with a scale factor of 3, noise level o = 0.
(a) LR. (b) original. (c) Bicubic. (d) NARM. (e) MSEPLL. (f) ASDS. (g) NCSR. (h) SMSR. (i) REPS-SR.

Fig. 5. Visual comparison samples of the proposed method and other state-of-the-art methods on ‘Butterfly’ image with a scale factor of 3, noise level ¢ = 5.
(a) LR. (b) original. (c) Bicubic. (d) NARM. (e) MSEPLL. (f) ASDS. (g) NCSR. (h) SMSR. (i) REPS-SR.

by registration error or noise [4]. On the other hand, a small
parameter will lead to a good solution of the SR problem
when the noise level is small. It means that a higher level
of noise level should be corresponding to a larger value
of regularization parameter [36]. In the proposed method,
we adaptively determine the smoothing-aware factor /J, by
regarding the factor 1, as a function of unknown noise level.
In this paper, the noise level of LR image is estimated based
on the selected weak textured patches [49], [S0] using PCA.
Many experiments were conducted to verify the generality of
the theory that a high level of noise corresponds to a large
value of 2,. Different levels of Gaussian noise are added to
various images, and different values of 1, that range from
0 to 2 are used in our experiments to obtain a large number
of SR results. Table I shows the average experimental results
when noise level ranges from O to 10 and J, ranges from
0 to 1.2 with six test images. As seen from Table I, for a
fixed noise level, a more suitable value of 1> can be found
according to the SR results considering both the peak signal

to noise ratio (PSNR) and structural similarity (SSIM) [51]
values. Fig. 1 shows the relationship between optimal values
of 1, and their corresponding noise levels, which verifies that
the smoothing-aware factor ), increases as the noise level
increases. From Fig. 1, we propose to define a function to
fit the statistical relationship between unknown noise level and
the smoothing-aware factor /,, which is formulated as follows:

N
1
lr=mo+n=m imin(ﬁ Z ¥ =)y _ﬂ)T) +n,

i=1

(15)
where ¢ = ‘/ﬂ.min(zy/) is the estimated noise level, Zy, =

N
% S -y — )" denotes the covariance of selected
i=1

weak textured patches y’;, N is the number of patches y’;
and pu is the average of image patches, and m and n are
the fitted variables, with corresponding values of 0.1 and 0.1,
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respectively. Applying the above scheme, for nature image SR,
once the noise level is estimated, we can adaptively determine
the smoothing-aware factor 1,, the experimental results show
better SR performance of the proposed method than that with
a fixed constant.

IV. EXPERIMENT RESULTS

To validate the effectiveness of the proposed REPS-SR
method, numerous experiments are conducted on a variety
of natural images in this section. The images used in the
proposed method are shown in Fig. 2. The basic parameter
settings of the proposed REPS-SR method are as follows:
the cluster number K is 70, the patch size is 6 x 6 with
overlapping 4, 6 = 7, ¢ = 0.35, T = 5, J = 160. In our
experiments, the HR image is first blurred by using a 7 x 7
Gaussian kernel with a standard deviation of 1.6, and then
the blurred image is down-sampled in both horizontal and
vertical directions by a scaling factor of 3 to generate the
LR image. In our experiments, H is assumed as a Gaussian
matrix. Different levels of Gaussian noise are added to the
LR image to verify the performance of the proposed method.
We compare the proposed method with several state-of-the-
art methods, including Bicubic, MSEPLL [40], NARM [41],
ASDS [37], NCSR [44], and SMSR [3]. Since human vision
is more sensitive to the luminance component, all our experi-
ments are carried out using only the luminance component,
while the bicubic interpolator is applied to the chromatic
components. The PSNR and SSIM [51] values are calculated
in the luminance channel to evaluate the quality of our final SR
images for the objective comparison of our REPS-SR method
and the state-of-the-art methods.

A. Effectiveness and Robustness of the Proposed Method

In this subsection, we present the results from experi-
ments on twelve images shown in Fig. 2 to evaluate the
SR performance of the proposed method. Different levels of
Gaussian noise are added to explore the robustness of the
proposed method against noise. Tables II and III show the
objective evaluation results of PSNR/SSIM when the added
Gaussian noise levels are 0 and 5 and the magnification
factor is 3. As seen from the results, the proposed REPS-
SR method achieves slightly higher PSNR values and the
SSIM value is very close to that of NCSR method when the
noise level is 0. Since SMSR method [3] designs a multi-
step magnification scheme for the initial estimation of the HR
image instead of bicubic interpolation, the performance of the
proposed REPS-SR method is not as good as that of SMSR
method. Figs. 3 and 4 show visual comparison examples of
test images. It can be seen that the proposed REPS-SR method
recover image edges better and show comfortable visual effects
compared with SMSR method. However, when the noise level
increases, our REPS-SR method achieves better results both
in objective assessment and visual comparison. As seen from
Table III, when the noise level is 5, the proposed REPS-
SR method outperforms the existing competitive methods
in objective evaluations for all test images. The subjective
evaluation is shown in Figs. 5 and 6 with ‘Butterfly’ and
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‘Plants’ as the example images. Since our method proposes
to use the gradient guided filtering to form an edge-preserving
regularization term, sharper edges and much smooth regions
can be recovered. Compared with NCSR method [44] and
SMSR method [3], our method can better preserve edges
and the reconstructed image is much cleaner. It is noted that
when the noise level gradually increases, worse SR results
are obtained with all methods. Table IV shows the objective
evaluation results of PSNR/SSIM values when the added
Gaussian noise level is 10 with a magnification factor of 3
and the subjective visual effect is shown in Figs. 7 and
8. From those figures, we can see that when the noise is
larger, the proposed method can better recover the HR image
and suppress noise. Fig. 9 shows results of the proposed
method and other state-of-the-art SR methods on ‘Butterfly’
image when the noise level gradually increases. The average
performance on twelve test images is shown in Fig. 10. From
those figures, we can see that the proposed method degrades
more slowly compared with other SR methods. Among the
existing methods, SMSR [3] and ASDS [37] degrade faster
than other methods when the noise level increases. Our method
achieves the highest PSNR/SSIM values when adding high-
level noise on test images. Our method also performs well
with different noise levels, which indicates that the proposed
REPS-SR method is robust to noise.

B. Discussion on the Proposed EPS Regularization

In the proposed method, the gradient guided filtering is
used to preserve image edges and reduce noise in the smooth
area. The gradient guided filtering is used to obtain the edge-
preserving smoothing image. The filtering output image is cal-
culated and incorporated into image SR model. The proposed
EPS regularization makes the reconstructed HR images closer
to the filtering output image which is helpful to minimize
the objective function in Eq. (9). Furthermore, due to the
gradient guided filtering, the images edges can be enhanced
during iterative processing. The proposed EPS regularization
term can also remove some noise in the reconstructed image.
Moreover, the REPS-SR method makes the gradient of the
reconstructed image similar to the gradient guided filtering
output image. Experiments indicate that the proposed REPS-
SR method achieve promising performance, especially for
noisy images.

C. Investigation on the Smoothing-Aware Factor

In this subsection, we discuss the scheme that adap-
tively determines the smoothing-aware factor 1. In the
regularization-based SR methods, a fitted value of the regular-
ization parameter is an essential issue. Instead of determining
the parameter experiential, we propose to adaptively adjust
the smoothing-aware factor ), according to the noise level
of LR images. Table V shows our experimental results with
added noise levels 0, 5 and 10. For a fixed noise level,
we conduct the experiments with 1, = 0.3, 1> = 0.8 and the
adaptive method. From Table V, we can observe that when
the added noise level is fixed, different values of 1, influence
the SR results. Fig. 11 shows how ], influences the visual
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Fig. 6. Visual comparison samples of the proposed method and other state-of-the-art methods on ‘Plants’ image with a scale factor of 3, noise level ¢ = 5.
(a) LR. (b) original. (c) Bicubic. (d) NARM. (e) MSEPLL. (f) ASDS. (g) NCSR. (h) SMSR. (i) REPS-SR.

TABLE III
PSNR (dB)/SSIM RESULTS ON THE RECONSTRUCTION OF HR IMAGES WITH A SCALE FACTOR OF 3, NOISE LEVEL o =5

Images REPS-SR SMSR[3] NCSR[44] ASDS[37] MSEPLL[40] NARM[41] Bicubic
Butterfly 27.17/0.8932 26.44/0.8316 26.87/0.8869 26.00/0.8614 26.88/0.8737 22.60/0.7789 20.74/0.7039
Flower 28.26/0.8063 27.55/0.7397 28.12/0.7950 27.70/0.7745 27.83/0.7763 25.51/0.7038 24.74/0.6484
Hat 30.19/0.8352 29.07/0.7178 30.02/0.8229 29.57/0.8130 29.70/0.7941 27.41/0.7817 27.00/0.7482
Parrots 29.57/0.8836 28.69/0.7652 29.50/0.8742 28.75/0.8656 28.82/0.8487 26.06/0.8284 25.43/0.7982
Plants 31.99/0.8652 30.26/0.7643 31.79/0.8579 31.07/0.8349 30.18/0.8290 28.79/0.8001 27.62/0.7613
Leaves 26.67/0.9066 26.12/0.8662 26.29/0.8943 25.47/0.8631 25.31/0.8615 21.57/0.7430 19.80/0.6330
Ppt 25.12/0.9049 24.20/0.8242 24.85/0.8847 24.15/0.8685 24.64/0.8701 21.27/0.7915 19.95/0.7286
Parthenon 26.49/0.7090 26.08/0.6528 26.40/0.7003 26.07/0.6804 26.26/0.6830 24.70/0.6293 24.04/0.6045
Bird 33.01/0.9108 31.07/0.8269 32.88/0.9078 32.72/0.9017 32.50/0.8907 29.16/0.8572 27.31/0.8026
Eyetest 22.11/0.9140 21.62/0.8680 21.74/0.8949 20.49/0.8508 22.03/0.8914 18.04/0.7778 16.57/0.7038
Comic 24.59/0.7465 24.28/0.7168 24.51/0.7407 24.24/0.7233 24.39/0.7256 22.16/0.6100 21.35/0.5687
Starfish 27.86/0.8171 27.44/0.7787 27.79/0.8159 27.30/0.8042 27.48/0.8002 24.72/0.7199 23.75/0.6789
Average 27.75/0.8494 26.90/0.7794 27.56/0.8396 26.96/0.8201 27.17/0.8204 24.33/0.7518 23.19/0.6983

Fig. 7. Visual comparison samples of the proposed method and other state-of-the-art methods on ‘Butterfly’ image with a scale factor of 3, noise level
o =10. (a) LR. (b) original. (c¢) Bicubic. (d) NARM. (e) MSEPLL. (f) ASDS. (g) NCSR. (h) SMSR. (i) REPS-SR.

assessment with ‘Butterfly’ as the example image. It shows that
using an optimal 1, with our method can achieve promising
visual effects. Furthermore, we found that a fixed value of A,
may not be suitable for different noise levels. For example,

A2 = 0.6 is relatively suitable when the noise level is 5.
However, when the noise level is 10, the experimental results
become worse. It can be seen from Table V that the proposed
adaptive smoothing-aware scheme outperforms almost all the
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Fig. 8. Visual comparison samples of the proposed method and other state-of-the-art methods on ‘Plants’ image with a scale factor of 3, noise level o = 10.
(a) LR. (b) original. (c) Bicubic. (d) NARM. (e) MSEPLL. (f) ASDS. (g) NCSR. (h) SMSR. (i) REPS-SR.

TABLE IV
PSNR (dB)/SSIM RESULTS ON THE RECONSTRUCTION OF HR IMAGES WITH A SCALE FACTOR OF 3, NOISE LEVEL ¢ = 10

Images REPS-SR SMSR[3] NCSR[44] ASDS[37] MSEPLL[40] NARM[41] Bicubic
Butterfly 25.97/0.8657 24.30/0.7156 25.74/0.8495 24.62/0.7592 25.49/0.8469 22.42/0.7581 20.62/0.6693
Flower 27.10/0.7654 25.21/0.5955 26.94/0.7343 26.19/0.6694 26.59/0.7428 25.18/0.6767 24.45/0.6150
Hat 29.14/0.8066 26.26/0.5359 28.78/0.7649 27.57/0.6523 28.76/0.7764 27.03/0.7504 26.48/0.6778
Parrots 28.35/0.8567 25.95/0.5847 28.05/0.8209 27.08/0.7226 27.56/0.8258 25.78/0.7994 25.06/0.7300
Plants 30.49/0.8222 26.76/0.5815 30.20/0.8006 28.55/0.6963 29.62/0.7881 28.28/0.7670 27.04/0.6976
Leaves 25.28/0.8720 24.14/0.7833 25.07/0.8587 24.22/0.7916 23.98/0.8216 21.37/0.7269 19.70/0.6137
Ppt 24.51/0.8686 23.60/0.7138 24.30/0.8427 23.47/0.7934 23.91/0.8491 21.21/0.7732 19.85/0.6885
Parthenon 25.79/0.6745 24.34/0.5254 25.71/0.6528 24.09/0.5907 25.51/0.6444 24.51/0.6092 23.77/0.5639
Bird 30.90/0.8683 27.22/0.6685 30.69/0.8556 29.42/0.7822 30.51/0.8553 28.62/0.8303 26.76/0.7581
Eyetest 21.35/0.8843 21.04/0.7901 21.17/0.8690 20.10/0.7970 21.53/0.8864 17.95/0.7700 16.52/0.6794
Comic 23.61/0.6864 22.82/0.6143 23.56/0.6799 23.60/0.6546 23.35/0.6589 21.96/0.5869 21.20/0.5441
Starfish 26.45/0.7623 25.05/0.6176 26.40/0.7566 25.81/0.7165 26.15/0.7459 24.42/0.6947 23.49/0.6416
Average 26.58/0.8103 24.72/0.6439 26.38/0.7905 25.39/0.7188 26.08/0.7868 24.06/0.7286 22.91/0.6566
30 —e—REPS-SR —@— SMSR 0.95
NCSR ~ —e—ASDS
28 —e— MSEPLL NARM 0.85
—&— Bicubic
26 0.75
24 0.65
—e—REPS-SR —e— SMSR
”» 0.55 NCSR  —e—ASDS
\ —e— MSEPLL NARM
o— — o A —e— Bicubic
20 0.45
0 5 10 15 20 0 5 10 15 20

Fig. 9. PSNR and SSIM results of the proposed method and other state-of-the-art SR methods on “Butterfly” image with gradually increasing noise levels.

situations when J, is fixed. From the visual comparison,
the reconstructed image of the adaptively smoothing-aware
scheme is smoother and cleaner than that of a fixed parameter.
Such a situation indicates that for different noise levels, it is
necessary to adaptively determine a variable smoothing-aware
factor 1. Therefore, we propose to use a function to fit the
relationship between the smoothing-aware factor and the noise
level of LR image. The factor can be adaptively determined

without manual interference. Experimental results indicate the
effectiveness of this adaptive smoothing-aware scheme.

D. Performance on Real-Life Noisy Images

In this subsection, the performance of the proposed method
and the comparison methods on real-life noisy images is
provided. The noisy images are obtained from LIVE In the
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Average PSNR and SSIM results of the proposed method and other state-of-the-art SR methods on twelve test images with gradually increasing

TABLE V
PSNR (dB)/SSIM RESULTS ON THE RECONSTRUCTION OF HR IMAGES WITH A SCALE FACTOR OF 3

A2 adaptive smoothing-aware factor 1, 2,=03 1,=0.8
noise level o=0 o=5 o=10 =0 o=5 o=10 =0 o=5 o=10
Flower 29.59/0.8530 | 28.26/0.8063 | 27.10/0.7564 | 29.40/0.8287 | 28.26/0.8060 | 27.04/0.7483 | 28.70/0.7773 | 28.27/0.8061 | 27.08/0.7551
Hat 31.39/0.8631 | 30.19/0.8352 | 29.14/0.8066 | 31.11/0.8277 | 30.18/0.8354 | 28.98/0.7879 | 29.51/0.7241 | 30.21/0.8354 | 29.13/0.8055
Plants 34.10/0.9169 | 31.99/0.8652 | 30.49/0.8222 | 28.98/0.7879 | 31.95/0.8641 | 30.33/0.8095 | 32.78/0.8505 | 31.95/0.8644 | 30.48/0.8206
Parrots 30.51/0.9077 | 29.57/0.8836 | 28.35/0.8567 | 30.16/0.8642 | 29.56/0.8832 | 28.26/0.8461 | 28.81/0.7751 | 29.57/0.8829 | 28.34/0.8559

Fig. 11.
Jo=15.(e) 12 =20. () 1p=25.

The effects of 1> on the recovered HR images given the same input (scaling factor 3, noise level 10). (a) 12 =0 (b) 1o =0.5. (¢) 12 = 1.0. (d)

TABLE VI
AVERAGE RUNNING TIME OF DIFFERENT METHODS

Method NARM MSEPLL

ASDS

NCSR SMSR REPS-SR

Average Time 94.14s 327.24s

174.06s

191.05s 307.06s 200.47s

Wild Image Quality Challenge Database' in which the distor-
tion type is unknown. The images with size of 500 x 500
are down-sampled by a scale factor of 3 and then used
to generate HR images. The visual comparison samples are
shown in Figs. 12 and 13, respectively. As shown in these
figures, we can observe that the proposed REPS-SR method
can preserve image edges well and the smooth regions are
much cleaner than these from NCSR and ASDS methods.
SMSR and NARM methods reconstruct the HR images with

ILIVE In the Wild Image Quality Challenge Database. Online:
http://live.ece.utexas.edu/research/ChallengeDB/index.html, 2015.

blur image edges and suffer from noise. Although MSEPLL
method performs well on reconstructed image edges, the noise
in smooth regions cannot be removed. Compared with these
existing methods, the proposed method is more robust and
can obtain consistently better performance on real-life noisy
images.

E. Complexity Analysis

To evaluate the computational complexity of the proposed
method, we conduct the comparison experiment for computa-
tional complexity of different methods on 10 images rescaled
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Fig. 12.  Visual comparison samples of the proposed method and other state-of-the-art methods on real-life noisy image (number 1079 in the database) with
a scale factor of 3. (a) LR. (b) Bicubic. (c) NARM. (d) MSEPLL. (e) ASDS. (f) NCSR. (g) SMSR. (h) REPS-SR.

Fig. 13.

Visual comparison samples of the proposed method and other state-of-the-art methods on real-life noisy image (number 224 in the database) with

a scale factor of 3. (a) LR. (b) Bicubic. (c) NARM. (d) MSEPLL. (e) ASDS. (f) NCSR. (g) SMSR. (h) REPS-SR.

to 256 x 256 pixels on the 3x image enlargement task.
We calculate the average running time of the proposed method
and five representative methods for these test images using
MATLAB 2014b on a computer with Intel(R) Core (TM) i7-
6700HQ@2.60 GHz and 64-bit Windows 10 operating system.
The running time of the compared methods are reported
in Table VI. The proposed method takes an average time of
200.47s for a 256 x 256 image, while NCSR method takes
an average time of 191.05s. The other sparse representation
based methods (NARM, ASDS, and SMSR) take an average
time of 94.14s, 174.06s, and 307.06s. The proposed method

improves SR performance at a cost of approximately equal
running time compared with NCSR method. Note that, the pro-
posed method is implemented by MATLAB, and the speed
could be improved by implementing it in C++-.

V. CONCLUSION

In this paper, we propose a novel robust single-image SR
method. An EPS regularization term is designed to improve the
SR performance. Image nonlocal self-similarity is incorporated
into the proposed method to further improve SR perfor-
mance both in objective and subjective evaluations. Extensive
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experiments are conducted to explore the relationship between
the added Gaussian noise level and the proposed smoothing-
aware factor. An adaptively determined the smoothing-aware
factor scheme is designed by estimating the unknown noise
level from the observed LR image. Experiments have demon-
strated that the REPS-SR method is competitive with other
leading SR methods when the noise level is zero and outper-
forms the state-of-the-art methods when larger noise levels are
added, which indicates the robustness of the proposed method.
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